1IECL - Institut Élie Cartan de Lorraine (Université de Lorraine, Boulevard des Aiguillettes BP 70239 54506 Vandoeuvre-les-Nancy Cedex
Ile du Saulcy - 57 045 Metz Cedex 01 - France)
Abstract : We introduce the holonomy of a singular leaf L of a singular foliation as a sequence of group morphisms from πn(L) to the πn−1 of the universal Lie ∞-algebroid of the transverse foliation of L. We include these morphisms in a long exact sequence, thus relating them to the holonomy groupoid of Androulidakis and Skandalis and to a similar construction by Brahic and Zhu for Lie algebroids.
Camille Laurent-Gengoux, Leonid Ryvkin. The holonomy of a singular leaf. Selecta Mathematica (New Series), Springer Verlag, 2022, 28 (2), pp.45. ⟨10.1007/s00029-021-00753-z⟩. ⟨hal-03669113⟩