J. Cool, T. Defalco, and B. Capel, Testis formation in the fetal mouse: Dynamic and complex de novo tubulogenesis, Wiley Interdiscip Rev Dev Biol, vol.1, pp.847-859, 2012.

N. Warr and A. Greenfield, The molecular and cellular basis of gonadal sex reversal in mice and humans, Wiley Interdiscip Rev Dev Biol, vol.1, pp.559-577, 2012.

R. Sekido and R. Lovell-badge, Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer, Nature, vol.453, pp.930-934, 2008.

V. P. Vidal, M. C. Chaboissier, D. G. De-rooij, and A. Schedl, Sox9 induces testis development in XX transgenic mice, Nat Genet, vol.28, pp.216-217, 2001.

F. Barrionuevo, Homozygous inactivation of Sox9 causes complete XY sex reversal in mice, Biol Reprod, vol.74, pp.195-201, 2006.

R. Hiramatsu, A critical time window of Sry action in gonadal sex determination in mice, Development, vol.136, pp.129-138, 2009.

Y. Kim, Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination, PLoS Biol, vol.4, p.187, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00708293

C. K. Matson, DMRT1 prevents female reprogramming in the postnatal mammalian testis, Nature, vol.476, pp.101-104, 2011.

N. H. Uhlenhaut, Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation, Cell, vol.139, pp.1130-1142, 2009.

S. Vainio, M. Heikkilä, A. Kispert, N. Chin, and A. P. Mcmahon, Female development in mammals is regulated by Wnt-4 signalling, Nature, vol.397, pp.405-409, 1999.

A. Biason-lauber, K. D. Navratil, F. Schoenle, and E. J. , A WNT4 mutation associated with Müllerian-duct regression and virilization in a 46,XX woman, N Engl J Med, vol.351, pp.792-798, 2004.

P. Parma, R-spondin1 is essential in sex determination, skin differentiation and malignancy, Nat Genet, vol.38, pp.1304-1309, 2006.

A. A. Chassot, Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary, Hum Mol Genet, vol.17, pp.1264-1277, 2008.

K. Tomizuka, R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling, Hum Mol Genet, vol.17, pp.1278-1291, 2008.

H. X. Hao, ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner, Nature, vol.485, pp.195-200, 2012.

B. K. Koo, Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors, Nature, vol.488, pp.665-669, 2012.

Y. Xie, Interaction with both ZNRF3 and LGR4 is required for the signalling activity of R-spondin, EMBO Rep, vol.14, pp.1120-1126, 2013.

M. Zebisch, Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin, Nat Commun, vol.4, p.2787, 2013.

P. H. Chen, X. Chen, Z. Lin, D. Fang, and X. He, The structural basis of R-spondin recognition by LGR5 and RNF43, Genes Dev, vol.27, pp.1345-1350, 2013.

S. A. Jameson, Y. T. Lin, and B. Capel, Testis development requires the repression of Wnt4 by Fgf signaling, Dev Biol, vol.370, pp.24-32, 2012.

D. M. Maatouk, Stabilization of beta-catenin in XY gonads causes male-tofemale sex-reversal, Hum Mol Genet, vol.17, pp.2949-2955, 2008.

G. J. Bouma, L. L. Washburn, K. H. Albrecht, and E. M. Eicher, Correct dosage of Fog2 and Gata4 transcription factors is critical for fetal testis development in mice, Proc Natl Acad Sci, vol.104, pp.14994-14999, 2007.

N. Warr, Transgenic expression of Map3k4 rescues T-associated sex reversal (Tas) in mice, Hum Mol Genet, vol.23, pp.3035-3044, 2014.

W. De-lau, W. C. Peng, P. Gros, and H. Clevers, The R-spondin/Lgr5/Rnf43 module: Regulator of Wnt signal strength, Genes Dev, vol.28, pp.305-316, 2014.

P. Bernard, Wnt signaling in ovarian development inhibits Sf1 activation of Sox9 via the Tesco enhancer, Endocrinology, vol.153, pp.901-912, 2012.

N. Gonen, A. Quinn, H. C. O'neill, P. Koopman, and R. Lovell-badge, Normal levels of Sox9 expression in the developing mouse testis depend on the TES/TESCO enhancer, but this does not act alone, PLoS Genet, vol.13, p.1006520, 2017.

Y. Zhou, ZNRF3 acts as a tumour suppressor by the Wnt signalling pathway in human gastric adenocarcinoma, J Mol Histol, vol.44, pp.555-563, 2013.

J. Shi, ZNRF3 contributes to the growth of lung carcinoma via inhibiting Wnt/?-catenin pathway and is regulated by miR-93, Tumour Biol, vol.37, pp.3051-3057, 2016.

M. E. Dickinson, International Mouse Phenotyping Consortium

J. Laboratory,

, Infrastructure Nationale PHENOMIN

, Charles River Laboratories; MRC Harwell; Toronto Centre for Phenogenomics; Wellcome Trust Sanger Institute, RIKEN BioResource Center, vol.537, pp.508-514, 2016.

K. Mcelreavey, E. Vilain, N. Abbas, I. Herskowitz, and M. Fellous, A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development, Proc Natl Acad Sci, vol.90, pp.3368-3372, 1993.

D. M. Maatouk, L. Mork, A. A. Chassot, M. C. Chaboissier, and B. Capel, Disruption of mitotic arrest precedes precocious differentiation and transdifferentiation of pregranulosa cells in the perinatal Wnt4 mutant ovary, Dev Biol, vol.383, pp.295-306, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00868878

R. H. Rastetter, Marker genes identify three somatic cell types in the fetal mouse ovary, Dev Biol, vol.394, pp.242-252, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01117482

A. Beverdam and P. Koopman, Expression profiling of purified mouse gonadal somatic cells during the critical time window of sex determination reveals novel candidate genes for human sexual dysgenesis syndromes, Hum Mol Genet, vol.15, pp.417-431, 2006.

D. Bogani, Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination, PLoS Biol, vol.7, p.1000196, 2009.

I. Stévant, Deciphering cell lineage specification during male sex determination with single-cell RNA sequencing, Cell Rep, vol.22, pp.1589-1599, 2018.