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Abstract. Decoherence theory explains how quantum mechanics gives rise to classical mechanics

through the entanglement of a quantum system’s evolution with the degrees of freedom of the

environment. The present article explores another pathway from the quantum to the classical behaviour.

We consider a spinless particle interacting with a disordered landscape of potential energy. The matter-

wave evolution is handled within time-dependent quantum statistical mechanics, in which the wave

function is replaced by a Wigner function defined in position-momentum space. Upon zooming out to

scales exceeding the correlation length of the disorder, it is found that the description only involves the

state populations as defined in classical statistical physics. Quantum coherence effects are significant only

over smaller spatial scales, where they give rise to a noise superimposing on the classical description. The

waning of coherence, which reflects the emergence of classicality, is due to the multiple scattering of

matter waves; and the framework may be viewed as a stochastic wave mechanics.

1 The quantum-to-classical
transition in decoherence theory

state, namely 2−1/2(ψ1 + ψ2) if the overlap is negligible,

of state operator 2−1[|ψ1)(ψ1| + |ψ2)(ψ2| + |ψ1)(ψ2| +

|ψ2)(ψ1|], at zero time. The cross terms embody the

system’s ability to exhibit interference effects. Owing to

environmental influences, such a superposition state is

not stable over time, and it decays into a statistical

mixture 2−1[|ψ1)(ψ1|(t) + |ψ2)(ψ2|(t)] at a long enough

time t > 0. The coherences, defined as the off-diagonal

elements of the matrix of the state operator [6, 7], are

destroyed, hence the name ‘ decoherence ’. Decoherence

theory determines the basis with respect to which off-

diagonal elements disappear as t → +∞, and the typical

time scale of their disappearance. It is the interaction

Hamiltonian that primarily determines the basis and the

time scale, together with the system’s Hamiltonian. As

the interaction is often dependent on the position

variable, a Schrödinger-cat-like superposition of macro-

scopically distant wave packets ψ1 and ψ2 rapidly

decoheres into a classical mixture, whereby the

interference effect is effectively suppressed. The

formalism of decoherence theory rests upon the fact that

the environmental degrees of freedom are unobserved in

most practical cases, owing to their huge number and/or

uncontrollable nature. By tracing out those degrees of

freedom, a reduced state operator is obtained. That

operator is the repository of the information allowing to

predict (statistically) the behaviour of the system

embedded in its environment.

For a long time, it was believed that quantum mechanics

only holds at the microscopic level. The emergence of

classicality in quantum theory has been a long-standing

enigma. A clue was offered by decoherence theory

initiated in the 1970s and 1980s in the works of Zeh and

Zurek [1–5]. One could then understand, within the

framework of quantum theory, why the macroworld

appears to be classical. For instance, a macroscopic

object is found in an approximate position of its centre of

mass, but never in a Schrödinger-cat-like superposition

of two or more macroscopically distinct positions.

Explaining such an effective superselection rule was one

motivation of decoherence theory. Besides, the

derivation of classical concepts in a purely quantum

framework removes many oddities of the Copenhaguen

interpretation. The new theory rests upon the

unavoidable coupling of the quantum system to the

environment hosting it. The latter, for instance a huge

number of air molecules and/or photons, scatters the

guest system, the dynamics of which is entangled with

that of the many-degree-of-freedom environment. This

strongly affects the measurement of variables attached to

the system itself. Even though, classically speaking, the

influence of the environment on the system (for instance,

the damping of its momentum) is negligible, interference

effects with respect to certain physical quantities

(especially position) become prohibitively difficult to

observe in most cases. Consider two states of a particle,

ψ1 and ψ2 , such as Gaussian wave packets of well-

defined centroids. They may superpose to give a new

This paper investigates another approach to the

quantum-to-classical transition. The system studied

herein is a spinless particle and the environment hosting

it is very simple. It is a static potential-energy landscape

of a disordered nature. By ‘ disordered ’ we mean a
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random scalar field which may have many instantiations

(‘ realisations ’) distributed according to a probability

law. The behaviour of the guest particle will be obtained

by averaging over all realisations of the energyscape.

Our goal is to recover the classical-mechanical behaviour

of the guest particle subjected to a non-random potential-

energy field besides the random field. We will examine

how quantum mechanics turns into classical-statistical

mechanics. It is only possible to recover statistical

physics, rather than Newton’s deterministic dynamics,

because the information encoded in Schrödinger’s state

vector ψ or von Neumann’s state operator |ψ)(ψ| is

inherently statistical. Quotation from Einstein and Infeld

[8] : ‘ Quantum physics formulates laws governing

crowds and not individuals. Not properties but

probabilities are described, not laws disclosing the future

of systems are formulated, but laws governing the

changes in time of the probabilities and relating to great

congregations of individuals ’. Likewise, Schrödinger

wrote: ‘ We never experiment with just one electron or

atom or (small) molecule. In thought-experiments we

sometimes assume that we do; this invariably entails

ridiculous consequences ’ [9].

degrees of freedom, haphazardly distributed throughout a

volume Ω. This is pictured in figure 2 which shows two

instantiations of the random field U2 . In the example of

an electron in a weakly ionised gas, the scatterers are the

neutral atoms or molecules of the gas, which in a first

approximation are taken as infinitely heavy and therefore

stay at rest. Both fields U1 and U2 are time-independent

(static); but eventually this assumption can be relaxed.

There are two other differences between the two fields:

(i) U1 is taken to be smooth whereas U2 exhibits small-

scale irregularities, or loosely speaking disorder; and

(ii) this disordered potential is taken to be weak, as will

be specified in section 5.

Quantum mechanics

Schrödinger dynamical equation

∴  ψ(r, t) ∝ (complex-valued)

probability amplitude in r space

 ∂ψ 

∂t
 = (ih

_
)−1

 [Ekin(−ih
_
∇) + U1(r) + U2(r)]ψ

↓
Wigner dynamical equation

 ∂f
W

 

∂t
 = (

 ∂f
W

 

∂t
)

kin

 + (
 ∂f

W
 

∂t
)

U1 +
 

U2

∴  f
W

(r, p, t)/h3 = (real-valued)

quasi-probability density in phase space

 ∂f
W

 

∂t
 + (

 ∂Ekin 

∂p
).∇f

W
 + ∇(−U1)

.(
 ∂f

W
 

∂p
)

= (ih
_

)−1
 ∫

BZ

 Ω d3p' 

h3  u
W

(r, p − p') f
W

(r, p', t)

↓
Classical (statistical) mechanics

Boltzmann-Lorentz kinetic equation

in phase space

∴  f0(r, p, t) ≡ 〈fW(r, p, t)〉disorder

 ∂f
0
 

∂t
 + (

 ∂Ekin 

∂p
).∇f0 + ∇(−U1)

.(
 ∂f

0
 

∂p
)

= ∫
BZ

 Ω d3p' 

h3  Wp,p' [f
0
(r, p', t) − f

0
(r, p, t)]

The paper unfolds as shown in figure 1. Section 2

starts out from Schrödinger’s formulation of quantum

dynamics and section 3 specifies the quantum states of

the spinless particle. Section 4 reformulates wave

mechanics in position-momentum space where the wave

function or the state operator is replaced by its Wigner

transform. In section 5, the disordered environment is

specified as a random energyscape. Wave mechanics in

such an environment is studied in section 6. The

transition to classical behaviour in Boltzmann’s

statistical formulation is the subject of section 7.  Section

8 comes back to decoherence theory and closes the

paper. Appendix A provides details about the multiple-

scale expansion sorting out the large-scale behaviour

from the small-scale one. In appendix B, the change due

to a non-static environment is sketched out, and this is

tied to the issue of thermalization by the environment.

2 The issue: Quantum particle in
a disordered environment

The present paper deals with the quantum-mechanical

motion of a particle hosted in an environment which is

modelled in the simplest way as a disordered static

energyscape. More specifically, we are considering a

spinless particle of mass m acted upon by a force derived

from an external potential energy U1(r) where r is the

position. The Hamiltonian operator is

Fig. 1. Organization chart of the article, where the notations of

the physical quantities involved will be introduced along the

paper. The starting point is Schrödinger’s differential equation

governing the complex amplitude of a probability density, i.e.

the matter-wave field ψ of a spinless particle. Its Wigner

transform fW is h3 times a quasi-probability density in phase

space which is governed by an integro-differential equation.

Both the Schrödinger and Wigner equations describe quantum

dynamics endowed with phase coherence. The ending point of

the article is Boltzmann’s classical-statistical description which

makes use of true (phaseless) probabilities.

H = 
 (−ih

_
∇)2

 

2m  + U1(r) + U2(r), (1)

where h
_

 = h/2π is the reduced Planck constant and ∇ ≡
∂/∂r is the gradient operator. While U1(r) is a given

function of position known with certainty, U2(r) is

known only statistically. Mathematically speaking U1

(U2) is a deterministic (probabilistic) function of r. For

definiteness, the environment as modelled by U2 may be

thought of as a set of fixed scatterers without internal
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momentum space is the fundamental Brillouin zone

(times h
_

), henceforth denoted by BZ, in the parlance of

the physics of the crystalline solid state.

Fig. 2. Random potential-energy field U2(x, y) in two

dimensions x and y. The field shown is a sum of three Yukawa

potentials of identical strength and range. The potentials only

differ in their central positions. Two instantiations

(‘ realisations ’) of the random field are shown in the figure.

Fig. 3. Cellular functions wn,m complementary to the discrete

plane waves, in two dimensions x and y. Two functions are

shown in the figure, namely w5,2 and w−3,−6 , centred at {xn =

5a, ym = 2a} and {xn = −3a, ym = −6a} respectively. The

cellular functions make up an orthonormal basis set of the

Hilbert space. In the continuum limit a → 0, the cellular

function wn,m tends to δ(x − xn)δ(y − ym).

3 The quantum states of a
particle in a box

The mathematical set-up of the quantum states is simpler

in a finite volume such as a cubic box of side L = Ω−1/3

[10]. With cyclic (Born-von Kármán) boundary

conditions, the momentum p of a plane wave bp(r) =

exp(ip.r/h
_

)/Ω1/2 takes discrete values. In one dimension

they are pn = n(h/L) with n = 0, ±1, ±2 ... Cyclic

boundary conditions allow for a steady particle flow

through the volume with a probability-current density (to

be defined below) J = Ω−1p/m. As two neighbouring

values of pn differ by h/L, the momentum-space volume

per state is (h/L)3
 = h3/Ω in three dimensions. It is

mathematically easier to restrict n to Nc values, i.e. −Nc/2

< n ≤ +Nc/2, and eventually let Nc → ∞. The quantum

states make up a Hilbert space of finite dimension Nc .

The momentum space has a volume Nc(h
3/Ω) in three

dimensions.

The case of an unbounded continuum is recovered by

letting Ω → ∞ and Nc → ∞ [10, 12]. Table 1 shows that,

in this double limit, a Darboux sum is replaced by a

Leibniz integral and a Kronecker symbol goes over to a

Dirac delta function. As noted by Messiah [10] and

expressed by the notation ≈ in Table 1, this procedure is

not mathematically rigorous, but it provides the

physically pertinent results.

Table 1. Discrete vs continuum description.

Darboux sum       ↔      Leibniz integral
The momentum representation is connected, via a

unitary transformation, to the complementary (i.e.

mutually exclusive) position representation. The latter

has a basis set [11]
Σr 

 Ω 

Nc

 F(r) ≈ ∫Ω F(r) d3r

wl(r) = 
1 

Nc

 Σp exp( ip.l 

h
_ )bp(r), (2) Σp 

 h3 

 Ω 
 G(p) ≈ ∫

BZ
 G(p) d3p

where wl(r) is a ‘ cellular function ’ localized about

position l. There are Nc such positions which make up a

‘ ghost lattice ’ in the box. In one dimension, the

positions of the ghost lattice sites l are xn = na, where a is

L/Nc and n takes Nc values. The calculation yields

Kronecker symbol      ↔      Dirac function

δr,r' ≈ 
 Ω 

 Nc 
 δ(r − r')

wn(x) = 
1

 Nca
1/2

 
 
 sin[π(x − xn)/a] 

sin[π(x − xn)/L] δp,p' ≈ 
 h3 

 Ω 
 δ(p − p')

≈ 
1

 a1/2
 
 
 sin[π(x − xn)/a] 

π(x − xn)/a
   if  Nc >> 1. (3)

A warning is in order. Cyclic boundary conditions are

associated with a torus topology in which Ehrenfest’s
This function peaks at the discrete position xn . Two

cellular functions are shown in figure 3. Accordingly, the
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first relation does not hold for a plane wave because the

expectation value of position is independent of time

while that of velocity does not vanish, namely

Several definitions of fW exist in the literature [7, 11,

13, 14]; the one chosen in this paper is dimensionless.

Just as there is one quantum state, there is one Wigner

function. The r-to-p duality is evinced in the two equally

valid formulae for fW in Table 2. The advantage of the

discretized finite box of section 3 is now apparent. While

the use of delta-peaked wave functions is common

practice in Schrödinger’s wave mechanics, it is

troublesome in Wigner’s formulation because then a

squared delta function can arise in the Wigner transform.

A similar trouble is met with unbounded plane waves

such that ψ̂ is a delta function of momentum.

 d

dt(bp|r|bp) = 0 while (bp|
 −ih

_
∇ 

m |bp) = 
p

 m 
 ≠ 0. (4)

In this paper round brackets ( | ) denote the scalar

product in the Hilbert space of states.

4 Wigner’s formulation of wave
mechanics in phase space

The dynamics of the particle is governed by

Schrödinger’s wave equation, namely
Table 2. Definition of the Wigner function fW from the wave

function ψ in either the position or the momentum

representation.

ih
_

 
 ∂ψ 

∂t
 = H ψ, (5)

where ψ(r, t) is a complex-valued function. Its squared

modulus is the particle’s probability of presence per unit

volume at position r and time t. Its argument ϕ(r, t)
provides the probability-current density J(r, t) = |ψ|2h

_

∇ϕ/m appearing in the local conservation equation,

Wave

function

Wigner function  fW(r, p)

ψ(r) ∫
Ω
ψ(r + 

 s 
2 ) ψ*(r − 

 s 
2 ) exp(− 

 ip.s 

 h
_

 
) d3s ∂|ψ|2 

∂t
 + div J = 0. (6)

From the matter-wave field ψ(r) at a given time, one

can build a Wigner transform fW(r, p) in phase space at

the same time. The phrase ‘ phase space ’ is used herein

to mean the Cartesian product Ω×BZ whose volume is

Nch
3. Juste like r in ψ(r), r and p in fW(r, p) are not

quantum operators but classical variables, namely the

position of a geometric point and h
_

 times the reciprocal

(Fourier) variable. In keeping with the cyclic boundary

conditions and following the guidelines of [13], we shall

consider all functions of r, such as the wave function ψ
or the Wigner function fW to be introduced below, as

restrictions to Ω of periodic functions on the unbounded

position space, with period L in one dimension. Then, we

can write ψ as a Fourier series,

ψ̂(p) ∫
BZ

Ω ψ̂(p + 
 q 
2 ) ψ̂*(p − 

 q 
2 ) exp(

 iq.r 

 h
_

 
) 

Ω d3q

 h3

The function fW is real-valued. It has some, but not

all, attributes of a probability distribution in phase space.

The function provides the marginal distributions in

position and in momentum, namely

∫BZ
 f

W
(r, p) 

 d3p 

h3  = |ψ(r)|2, (10)

∫Ω f
W

(r, p) d3r = |Ωψ̂(p)|2, (11)

whence

ψ(r) = Σp ψ̂(p) exp( ip.r 

 h
_

 
), (7) ∫∫

Ω×BZ
 fW(r, p) 

 d3r d3p 

h3  = 1. (12)
where p is a quantized momentum, and

However, fW(r, p) d3r d3p/h3 cannot be thought of as the

probability of finding the particle in the volume d3r d3p.

For example, fW can take non-zero values at positions r

(momenta p) where |ψ(r)|2 (|ψ̂(p)|2) vanishes. This

happens in particular prior to the overlapping of two

Gaussian wave packets which are about to meet together

and interfere. The Wigner function takes significant

values midway between the two packets, where ψ(r)

vanishes and no particle can be detected [7, 14]. Where

ψ(r) vanishes, relation (10) implies that f
W

(r, p) takes

both positive and negative values. It is said that fW(r,

p)/h3 is a quasi-probability density in phase space. Given

a subvolume ϖ of Ω×BZ where fW < 0, the integral

ψ̂(p) ≡ ∫
Ω

 ψ(r) exp(− 

 ip.r 

 h
_

 
) 

 d3r 

Ω
(8)

has the same physical dimension as ψ. On restricting the

summation over p to Nc values, the equality (7) becomes

approximate, but it is expected to become accurate in the

limit Nc → ∞. In the continuum limit (see Table 1), the

equality (7) is replaced by

ψ(r) ≈ ∫
BZ

 ψ̂(p) exp( ip.r 

 h
_

 
) 

 Ω d3p  

h3  . (9)

Likewise, we consider all functions of p, such as

Ekin(p) or the Wigner function fW(r, p), as restrictions to

the BZ of periodic functions on the unbounded

momentum space, with period h/a in one dimension. The

Wigner function is given in Table 2 where the definitions

only hold in the limits of large Ω and BZ. Note that, in

Table 2, the integrand is periodic in s with period L in

one dimension (respectively, periodic in q with period

h/a) so that no boundary terms are produced upon

integration by parts.

∫∫ϖ'
 fW(r, p) 

 d3r d3p 

h3 (13)

over the complementary subvolume ϖ', such that ϖ ∪ ϖ'

= Ω×BZ, will exceed unity. Likewise, if fW exceeds unity

in one or more Planck cells h3, then because of (12) it

will take negative values somewhere else. Because (13)

may lie outside the range 0–1, it is a quasi-probability.
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Thus, the function fW should be understood as a

mathematical tool which fully specifies the state of the

particle, just as the state operator |ψ)(ψ| also known as

the probability density operator in quantum statistical

mechanics. In particular, the Wigner function enables

one to calculate the expectation value, denoted by an

overbar, of observables such as Ekin(p) ≡ p2/2m or U(r),

in the manner of classical statistical mechanics, namely

in the force ∇(−U1) (this occurs in particular with a

quadratic potential) and fW obeys Liouville’s equation of

classical physics,

 ∂fW 

∂t
 + ( ∂Ekin 

∂p
).∇fW + ∇(−U1)

.( ∂fW 

∂p
) = 0. (23)

But it should be kept in mind that fW/h3 is only a quasi-
probability density. If its integral over a subvolume of

phase space is negative or lies above unity at t = 0, then

at a later time this non-classical feature will show up in

another subvolume. This comes about because the range

of fW is preserved during the evolution, as can be seen by

rewriting (23) as

Ekin

__
 = ∫∫

Ω×BZ
 Ekin(p) fW(r, p) 

 d3r d3p 

h3  , (14)

U 
_

 = ∫∫
Ω×BZ

 U(r) fW(r, p) 

 d3r d3p 

h3  . (15)

fW(r, p, t + dt) = fW(r − ( ∂Ekin 

∂p
) dt, p − ∇(−U1) dt, t).The Wigner function also provides the probability

current density according to the familiar formula,
(24)

J = ∫
BZ

 ( ∂Ekin 

∂p
) fW(r, p) 

 d3p 

h3  , (16) In many problems, the knowledge of the system

cannot be specified as a pure state (reine Fall). Instead of

one wave function ψ, one has to consider several wave

functions ψi with weights wi ≥ 0 such that Σi wi = 1. The

weights have to be specified at a given instant such as t =

0. The state of the system is then called a statistical

mixture and it is embodied in the state operator

Σi wi|ψi)(ψi|. This straightforwardly carries over to the

Wigner-function formalism, where the pure-state fW is

replaced by a weighted sum Σi wi fW,i . Because the

weights do not depend on time, the Wigner function of

the mixture obeys the same dynamical equation as fW .

where ∂Ekin/∂p is the group velocity of the matter wave.

How does the Wigner function fW(r, p, t) change in

time? Just as ∂ψ/∂t is a sum of kinetic- and potential-

energy contributions in Schrödinger’s formulation of

wave mechanics, here one can write

 ∂fW 

∂t
 = ( ∂fW 

∂t
)

kin

 + ( ∂fW 

∂t
)

pot

 . (17)

The kinetic-energy contribution is calculated as

( ∂fW 

∂t
)

kin

 = −( ∂Ekin 

∂p
).∇fW . (18)

The next section is devoted to the mathematical

specification of the environment, and how it affects the

particle’s behaviour according to classical physics. Its

effect in quantum physics is dealt with in section 6.

The pattern is simple because third- and higher-order

derivatives of Ekin(p) vanish; otherwise, see [15, 16]. The

potential-energy contribution is calculated as

( ∂fW 

∂t
)

pot

 = 
 1 

 ih
_

 
∫

BZ

 Ω d3p' 

h3  uW(r, p − p') fW(r, p', t), (19)

5 The disordered environment as
a static energyscape

where

uW(r, q) ≡ ∫Ω [U(r + 
 s 

2 ) − U(r − 
 s 

2 )] exp(− 

iq.s 

 h
_

 
) 

 d3s 

Ω
 

(20)
In this work the real-valued function U2 is a random

scalar field specified at every location by its mean,

〈U2(r)〉, and an unbiased fluctuation, u(r), that is to sayand U ≡ U1 + U2 . The dynamical equation obeyed by the

Wigner function is thus U2(r) ≡ 〈U2(r)〉 + u(r). (25)
 ∂fW 

∂t
 + ( ∂Ekin 

∂p
).∇fW =

The brackets 〈..〉 denote the averaging over all

instantiations (‘ realisations ’) of the energyscape.

Averaging is an operation which associates with a

random variable a non-random or ‘ sure ’ number. A

possible U2(r) in two dimensions is pictured in figure 2;

the static function U2(r) may be thought of as a

spacewise noise. The random field has a covariance CU ≡
〈u(r) u(r + s)〉. The field is taken to be homogeneous

(translationally invariant), i.e. 〈U2〉 and CU do not depend

on r. We further assume isotropy (rotational invariance),

i.e. CU is a function of the modulus |s| only. The function

CU is characterized by the variance of the fluctuation,

namely u
0

2 ≡ CU(s = 0), and its typical decay length,

denoted by lc and called the correlation length. The

Zitterkraft (stochastic force) exerted by the field is Z(r) ≡
∇(−U2). Homogeneity entails a vanishing 〈Z(r)〉, i.e. the

Zitterkraft is unbiased. It is characterized by a covariance

matrix which is derived from the covariance of the

random potential energy,

 1 

 ih
_

 
 ∫

BZ

 Ω d3p' 

h3  uW(r, p − p') fW(r, p', t). (21)

Alternatively, the right-hand side may be written in terms

of the Fourier transform Û(q) of U(r),

( ∂fW 

∂t
)

pot

 = 
 i 

 h
_

 
 ∫

BZ

 Ω d3q 

h3  U(q)
^   

 [fW(r, p + 
 q 

2 ) −

fW(r, p − 
 q 

2 )] exp( iq.r 

 h
_

 
). (22)

By integration upon momentum, the right-hand side of

(21) does not contribute and we arrive at (6) given (10)

and (16).

If U2 is absent and U1 is smooth enough to allow

neglect of its third- and higher-order derivatives, the

associated uW is L (∂U1/∂x) δ'(q) in one dimension. Then,

the potential-energy contribution reduces to a differential

term, namely ∇U1
.(∂fW/∂p) in three dimensions. The rate

of change of fW due to the potential energy becomes local

5



    〈Zi(r) Zj(r + s)〉 = −( ∂2CU 

∂si ∂sj

),       i, j = x, y, z. (26)
first Born approximation of quantum scattering theory

[19], it is calculated that

σv(p) = 2σ0(
 p

0
 

2p)
4{ln[1 + ( 2p 

p
0

)2] − [1 + ( p
0

 2p 
)2]−1},

(34)

As an example, consider that U2(r) is due to Ns

identical scatterers, of individual potential energy v(ρ),

haphazardly interspersed in the volume Ω. In this

example, where

σ0 ≡ 4πρ0 
2( 2mv0 

p0
2 )2

(35)U2(r) = Σj = 1 ... Ns
 v(r − Rj). (27)

This is called a Poisson random field in the mathematical

literature. Its randomness lies in the position Rj of each

scatterer j = 1 ... Ns. The probability of finding Rj in a

volume d3Rj is d3Rj/Ω, it being assumed that the number

density of scatterers ns ≡ Ns/Ω is low. An analytically

workable example is the Yukawa potential,

is its value as p → 0. The function σv is plotted against

momentum p in figure 4 along with c(p). It is seen that

σv(p) takes its highest value σ0 as p vanishes. The

momentum-relaxation rate 1/τv is plotted against the

momentum in figure 5. The rate takes its highest value ≈
nsσ0p0/2m as p ≈ p0/2; that is to say the de Broglie

wavelength of the matter wave, h
_

/p, is on a par with the

range ρ0 of the Yukawa potential.

v(ρ) = v0(
 ρ0 

ρ
) exp(− 

ρ
 ρ0 

), (28)

where |v0| and ρ0 respectively assess the strength and

range of the potential. In figure 2, Ns = 3 and the

coordinates have been scaled by ρ0 . In this example,

〈U2〉 = 2πnsρ0
3v0 where nsρ0

3 is the number of scatterers

in a volume ρ0
3. Taking this number to be much less than

unity makes 〈U2〉 negligible. The covariance of this

energyscape is calculated to be exponential [17]
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CU(s) = u
0

 2  exp(− 

s
  lc 

), (29)

where

lc = ρ0 , (30)

u0 = 2πnsρ0
 3  |v0|. (31)

A weak disorder is obtained either in the weak-coupling

(v0 → 0) or the low-density (ns → 0) limit [18]. The

covariance matrix of the force is

〈Zi(r) Zj(r + s)〉 = ( u
0

 

l
c

)
2

 

 exp(−s/lc) 

 s/lc 
 [δij − ( s

 lc 
 + 1) sisj 

 s2 ],

i, j = x, y, z. (32)
Fig. 4. The total scattering cross section (σ) and velocity-

relaxation scattering cross section (σv) of the Yukawa potential

v(ρ) are plotted as functions of the momentum p. The

momentum scale p0 is h
_

/ρ0 , where ρ0 is the range of v(ρ). The

cross sections have been scaled by the value σ0 at a vanishing

energy. Also shown is the ratio of velocity persistence c(p), or

average direction-cosine of the scattering angle (p, p'), as a

function of p = p'.

Since (u0/lc)
2

 = 2πnsρ0
3(v0/ρ0)

2, the typical Zitterkraft

u0/lc is smaller than the typical force |v0|/ρ0 of a single

Yukawa scatterer by a factor (2πnsρ0
3)1/2.

Classically speaking the Zitterkraft scatters particles

in a chance-like manner. The average momentum 〈p〉 of

an ensemble of particles which start out with the same

initial momentum is damped. The modulus p, however, is

unchanged as scattering is elastic. In classical kinetic

theory, the rate of momentum —or velocity— relaxation

is
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 ∝ pσ

v
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v
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0

1

 τv 
 = 

p
 m 

 ns σv , (33)

where σv , called the velocity-relaxation scattering cross

section off the potential v(ρ), includes velocity

persistence in a scattering event. The velocity-persistence

ratio c is defined as the average direction-cosine of the

velocities before and after the event. For scattering by a

Yukawa potential, at vanishing kinetic energies p2/2m the

differential cross section becomes independent of the

scattering angle so that c ≈ 0. At increasing energies, the

differential cross section falls off increasingly rapidly as

a function of the scattering angle. Once p >> p0 ≡ h
_

/ρ0 ,

only a forward peak of angular width ≈ h
_

/pρ0 is left so

that the collision becomes ineffective and c → 1. In the

Fig. 5. The rate of momentum relaxation (1/τv) is plotted as a

function of the scaled momentum together with the

momentum-relaxation scattering cross section (σv) of the
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Yukawa potential. The former peaks at about p0/2, where h
_

/p0
is the range of the potential.

spatially fluctuating potential energy u(x) = U2(x) − 〈U2〉 (not

shown in the figure). The fluctuation u(x) is small, i.e.

〈u(x)2〉1/2 << Etyp , and values u(x) and u(x') are uncorrelated

over a distance |x − x'| >> lc .Often the quantum scattering cross section is quite

different from the classical one. This is why frequently

classical-physics models are built which make use of the

quantum cross section or a phenomenological one. In

those models, it is considered that in multiple scattering

the probability current densities of matter waves add up

incoherently, just like in optics the intensities of light

beams reflected by several obstacles add up without

interfering. Whereas single scattering is handled

quantum-mechanically i.e. coherently, coherence effects

are ignored in multiple scattering. The next section

investigates the motion of a particle through a disordered

set of obstacles within the Wigner formalism where

coherence is fully accounted for.

If the weakness of the fluctuation can be assessed by

a dimensionless parameter ε, we may attempt to express

fW − 〈fW〉 as an expansion in powers of ε or equivalently

ε1/2, namely

fW = f0 + ε1/2f1 + ε1f2 + O(ε3/2). (36)

In this expression, f0 ≡ 〈fW〉 is independent of the

realisation of the fluctuation u(r) while f1 , f2 ... do

depend on the realisation. By construction of the

expansion, 〈f1〉 , 〈f2〉 ... vanish 
1. To find out a small

dimensionless parameter ε, we know of two small

physical parameters, namely the strength u0 of the

fluctuation and its characteristic length lc . The former is

taken to be small against the typical energy scale of fW ≈
〈fW〉, hereafter denoted by Etyp and estimated as Ekin

__
 such

as given by (14). The length lc is taken to be much

shorter than the scale over which 〈fW〉 undergoes a

significant variation. That scale, denoted by L (usually

not identical with the L of section 3), depends on the

applied force ∇(−U1) or,  in the absence thereof , the box

side Ω−1/3. Here L will be defined in connection with u0

[16, 21]. Over a length lc , energy U2 varies by about +u0

or −u0 with equal probabilities. Over a length L >> lc
consisting of L/lc segments lc , the root-mean-square

variation of U2 is u0(L/lc)
1/2. A significant variation will

ensue in the matter-wave field or its average Wigner

transform, if u0(L/lc)
1/2 is on a par with the typical energy

scale Etyp of fW . Thereby we let

6 Wave mechanics
in a disordered environment

We have to do with a matter wave propagating through

an energyscape which, as a stochastic field, can have

many realisations. Given an initial condition ψ(r, t = 0), a

matter wave has a unique history determined by the

peculiar realisation of U2(r). Each one gives rise to a

matter-wave field ψ(r, t > 0) or Wigner transform thereof.

Thereby ψ and fW themselves are stochastic quantities.

We have to consider a statistical ensemble of particles,

and we are primarily interested in the average 〈fW〉 over

all realisations of U2 . The fluctuating U2 will entail a

fluctuating Wigner function fW . If the fluctuation u(r) is

weak, then a realisation of fW will be close to the average

〈fW〉. This is sketched in figure 6. The fact that

covariance is short-ranged implies that two contiguous

volumes lc
3 are statistically independent. Thereby each

one is the seat of a realisation of the random variable;

and the spatial average over a large volume is identical

with the average over a large number of realisations, that

is to say an ensemble average [16].

ε1/2 ≡ ( lc 
 L 

 )1/2

 = 
 u0 

 Etyp 
 . (37)

This yields L = lc(Etyp/u0)
2. For u0 much smaller than

Etyp , a length L much larger than lc is needed for the

average Wigner function of the matter wave to be

significantly affected by the small but numerous kicks.

The main correction f1 to f0 is expected to scale as the

relative fluctuation in U2 , namely ε1/2; and (36) is also an

expansion in powers of the perturbation strength u0 .
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As a function of position, fW will vary over both the

long scale L and the short scale lc . This state of affairs is

reminiscent of the dynamics of a damped harmonic

oscillator, the position function f of which varies over

both the scale of the reduced period 1/ω (owing to the

elastic force) and the scale of the decay time τ (owing to

the damping force). Provided that 1/ω << τ, it is

mathematically convenient to consider that the

instantaneous oscillation f formally depends on two time

variables, a ‘ fast ’ one t' and a ‘ slow ’ one t = εt', with ε
standing here for the small dimensionless parameter

(ωτ)−1 [20]. Accordingly, the time derivative of f(t, t') is
∂f/∂t + ε−1(∂f/∂t'), and the second contribution dominates.

In a similar way, in the present issue fW(r, r') will be

                                                          
1

 Actually it is not possible to make 〈f1〉 , 〈f2〉 ... simultaneously

vanish if the expansion is limited to a finite order. Here we take

〈f1〉  = 0, and dropping the second-order term 〈f2〉 serves as a

closure relation of the expansion [20].

Fig. 6. Typical position dependence of the Wigner function

fW(x, p, t) in one space dimension x at given p and t. The small-

scale fluctuation of the Wigner function arises from the
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envisaged as a function of two formally independent

position variables, r' and r = εr' where ε is the ratio lc/L
of the characteristic variation lengths, besides the

variables p and t. The gradient of fW is ∇fW + ε−1∇'fW
where ∇' ≡ ∂/∂r'. The deterministic potential energy is

taken as a function U1(r) of the slow variable while the

random fluctuation u(r') is a function of the fast variable.

Omitting the p and t dependencies for a simpler notation,

the expansion (36) of fW is recast as 
2

Lorentz-type scattering term on the right-hand side, in

which Wp,p' d
3p'/h3 is the transition probability per unit

time that a particle of momentum p gets scattered to

momentum p'. Equations (40–41) mean that, if the

scatterers are arranged independently, the total scattering

is proportional to the number Ns of scatterers.

We can see that Wp,p' is given by first-order

perturbation theory as originally worked out by Dirac

[24] and called the second golden rule by Fermi [25].

That golden rule plays a major role also in decoherence

theory [1]; and it continues to arouse a number of

comments [26, 27]. We remark that strict energy

conservation, as expressed by the delta function of

energy in (40), is obtained here without assuming long-

lived plane waves. The time-energy uncertainty relation

invoked in textbooks [10] is unnecessary. Even for a high

scattering rate causing short-lived and energy-broadened

states, expression (40–41) of Wp,p' is valid if used in

(39) 
3. A similar conclusion had been reached in a

different way in the case of a particle colliding

inelastically [28].

fW(r, r') = f0(r, r') + ε1/2f1(r, r') + ε1f2(r, r') + O(ε1/2).

(38)

It will be shown that the dominant term f0 = 〈fW〉 only

depends on the slow variable r, in keeping with the fact

that f0 does not depend on the peculiar realisation of the

fluctuation u(r'). Contrariwise the other terms f1 , f2 ... do

vary over the small scale of the fluctuation. For the

expansion to be a solution of the Wigner dynamical

equation of section 4, the zero-order term will have to

satisfy a certain equation. A closed-form equation not

involving the higher-order terms is obtained in appendix

A and it is discussed in the next section.
The present paper deals with a weak disorder; the

opposite case of a strong disorder is shown in Table 3.

The golden rule does not hold for a strong U2 which

cannot be handled perturbatively owing to the non-

existence of delocalized energy eigenstates of H (plane

waves); and then localization in Anderson’s sense arises

[29]. In a weak disorder, a particle may be seen to

propagate as a plane wave, the lifetime of which is finite

owing to scattering events.

7 Classical statistical mechanics
recovered

With the local force term included and letting v(p) ≡
∂Ekin/∂p, the function f0 is governed by a linear

Boltzmann kinetic equation of the Lorentz type [22] (see

appendix A), namely

 ∂f0 
∂t

 + v(p).∇f0 + ∇(−U1)
.( ∂f0 
∂p

) = Table 3. Weak vs strong disordered energyscape.

∫
BZ

 

 Wp,p' d
3p' 

h3  [f0(p') − f0(p)] , (39)

Weak disorder

u0 → 0

Strong disorder

u0 → ∞
where

Wp,p' ≡ 
2π
 h
_

 
 ∫
Ω

CU(s) exp( i(p − p').s 

 h
_

 
) 

 d3s 

Ω
 δ(E(p') − E(p)).

(40) Fermi’s

golden rule

perturbative treatment

is possible

Anderson’s localization

propagative states

exp(ip.r/h
_

)

cannot be zero-order

solutions

We can see that 〈fW〉 = f0 obeys a closed-form equation

involving the covariance of the random potential-energy

field instead of the full probability law governing the

random field itself. If u in CU(s) is written as a Poisson

sum (27) of Ns identical potentials v(ρ) shifted at random

with respect to one another, then in (40) we have to do

with a random sum of Ns independent phasors. The

Verdet-Rayleigh theorem gives [23]
With (39–40) we have recovered classical non-

equilibrium statistical physics, save for two points:

∫
Ω

 〈u(R) u(R + s)〉 exp( i(p − p').s 

 h
_

 
) 

 d3s 

Ω
 =

(i) the classical scattering cross section is replaced by

the quantum one in the first Born approximation;

(ii) the unknown f0 is the disorder average of a quasi-
probability density.Ns|∫Ω v(ρ) exp( i(p − p').ρ 

 h
_

 
) 

 d3ρ 

Ω
|2

. (41)
The first point should not come as a surprise: the size of

atoms (bound states of electrons, as opposed toThe right-hand side involves a matrix element of the

particle-scatterer interaction potential reminiscent of the

first Born approximation of scattering theory. Equation

(39) is the Liouville equation (23) supplemented with a
                                                          
3

 In textbook derivations of the golden rule, a pseudo-problem

arises from arbitrarily picking out an initial time t0 in addition

to the current time t. In a rate-equation description, no duration

∆t = t − t0 and no energy uncertainty h
_

/∆t arise. Accordingly,

Wp,p' reflects a tendency or propensity in line with a

probabilistic description of the phenomenon.

                                                          
2

 The general scheme of a multiple-scale expansion involves an

infinite ladder of scales [20], while this expansion of fW is

limited to two length scales.
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continuum states) is given by Bohr’s radius a0 which

involves the non-classical constant h
_

. For h
_

 → 0, a0

vanishes and the discontinuous structure of matter does

not arise. The emergence of classicality has to do with

the second point. The function fW enfolds the information

allowing to calculate the expectation values of most

observables as if fW were a probability density in phase

space. Its classicality is conditional upon

or so. A sufficient condition to achieve this is a smooth

variation of the potential energy, besides the initial

condition 0 ≤ fW ≤ 1 at t = 0. A contrario, a fast spatial

variation of the deterministic potential energy U1 usually

entails non-classical values of fW , as actually occurs in a

resonant tunnelling diode where the particle is an

electron and U1 is the fast-wiggling applied electrostatic

energy [30].

 0  ≤  ∫∫ϖ fW(r, p) 

 d3r d3p 

h3   ≤  1, (42)
A non-classical behaviour also occurs in a disordered

potential energy U2 , but then it is liable to zoom out to

scales exceeding the correlation length of the disorder.

Averaging fW over a correlation volume lc
3 shrinks the

range of 〈fW〉 which may then fall within the 0–1 interval.

To the lowest order in the disorder strength, it is found

that 〈fW〉 satisfies a closed-form linear Boltzmann

equation of the Lorentz type. That kinetic equation

contains a scattering term which further shrinks the range

of values of 〈fW〉. One classical feature is out of reach,

however, namely an arbitrarily sharp function of (r, p)

forbidden by Heisenberg’s indeterminacy principle.

whatever the subvolume ϖ of Ω×BZ, that is to say quasi-

probabilities reduce to probabilities. On replacing fW by

an approximation f0 which ignores fine-grained details on

a scale lc , the range of values spanned by the function is

reduced and condition (42) is easier to satisfy. Then, f0
admits of a classical interpretation. If (42) is not satisfied

at t = 0, the dynamics will be non-classical at short times.

But the Boltzmann-Lorentz evolution of f0 combines

advection in phase space, on the left-hand side of (39)

which preserves the range of values of f0 as implied by

(24), with scattering, on the right-hand side of (39) which

shrinks that range to one single value at long times as

isoenergetic scatterings tend to distribute the values of p

equally over the energy shell Ekin(p) = E [16]. Thereby

the approximation f0 to fW will eventually satisfy

condition (42) and it will become interpretable as the

occupancy of a classical state defined as a pair (r, p) i.e.

a point in phase space.

The Wigner representation treats position and

momentum on the same foot; this is at odds with

decoherence theory where position is often the preferred

observable which becomes effectively superselected. The

dynamical theory of decoherence involves a time scale

τdec much shorter than the characteristic damping time τv

of classical physics. In the present study no time scale is

involved because the environment is a non-dynamical

entity. Coherent i.e. non-classical effects are present in

the correction f1 to the classical behaviour embodied in

f0 . The coherence correction f1 , so to speak a quantum

noise, is given by (A.7) in appendix A. It depends on the

peculiar realisation of the disorder, and it varies over the

scale lc . This length is akin to the spatial coherence

length in optics. Let us compare the matter-wave

coherence length with the momentum-damping length of

the random energyscape. The latter length is the mean

free path λ(p) = v(p)τv(p). An upper bound of the ratio

lc/λ(p) is 2πnsρ0
3(2mv0/p0

2)2 or, in terms of the stochastic

energyscape,

 An important limitation is in order, however.

Classical physics allows for occupancies f0 such that both

r and p are defined with arbitrarily sharp accuracy. This

cannot arise in the present description because fW is

bounded by a Cauchy-Schwarz inequality |fW| ≤ 8; see

also [7]. This feature outlives the ε → 0 limit of fW in

(38). Therefore, not all features of classical physics are

recovered in the ε → 0 limit.

In this study the particle is elastically bounced off a

static energyscape, which embodies a set of infinitely

heavy scatterers. The perfect Lorentz limit of kinetic

theory ensues. Appendix B discusses the modification

brought about when scatterers are not infinitely heavy;

and this is tied to the distinct issue of thermalization by

the environment.

 lc 
 λ(p) 

  ≤  ( u0 

E0

)2
, (43)

where E0 stands for (h
_

/lc)
2/2m. The waning of the phase

coherence takes precedence over damping if u0 < E0 .

This inequality may be viewed as a condition on the root-

mean-square amplitude of disorder u0 being less than E0

at a given lc , or as a condition on the correlation length

of disorder lc being smaller than h
_

/(2mu0)
1/2 at a given

u0 . In the present approach, a classical behaviour is not

obtained dynamically after a time exceeding a

decoherence time scale. Instead, this behaviour comes

out by zooming out to spatial scales exceeding a

coherence length equal to the correlation length of the

static disordered environment. Classical physics emerges

(subject to some limitations) as a coarse-grained

description of the quantum reality.

8 Closing summary

This paper has made use of the Wigner function, instead

of the state vector or von Neumann’s state operator, to

describe the quantum state of a simple system. The

Wigner function is a tool which allows one to calculate

the expectation values of most major observables as did

the phase-space occupation function in classical

statistical physics. Actually, however, fW/h3 is a density

of quasi-probability in phase space, whose integral over a

subvolume of phase space may lie outside the range 0–1.

A strongly non-classical dynamics is typified by a large

positive quasi-probability being almost cancelled by a

negative quasi-probability to give the normalization (12)

to unity. On the contrary, in nearly classical dynamics,

the integral of fW/h3 over any subvolume lies within 0–1

I am indebted to Jean-Claude Serge Lévy (Université de

Paris–Denis Diderot) for inviting me to participate in the

Eighth Complexity-Disorder Meeting.
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Appendix A Now, if a motionless scatterer has a mass me largely

exceeding m, an m-me scattering event causes a small

recoil of me whereby the guest particle imparts kinetic

energy to the environment hosting it. In this imperfect

Lorentz model (1 << me/m < ∞), scattering events are

slightly inelastic; and the energy-relaxation time τE(p) ∝
me/m is not infinite although it largely exceeds the

momentum-relaxation time τv(p). The latter assesses the

friction undergone by the particle, i.e. the damping of the

ensemble-averaged velocity. If the heavy scatterers are

not motionless but thermally agitated at a well-defined

and stable temperature Te , they tend to bring the guest

particle’s momentum distribution to a thermal-

equilibrium one at the temperature Te . In other words,

the scatterers act, with respect to the guest particle, as a

thermostat 
4. It is possible to extend the present treatment

to a random time-varying environment, as was done by

Henkel [32], and then the particle can undergo inelastic

scattering events. To the lowest order in u, in the golden

rule the delta function δ(E − E') becomes δ(E ± h
_
ω(q) −

E') where h
_
ω(q) is the energy quantum of a vibrational

mode of the environment. Thermalisation, however, does

not arise unless the time-varying field is quantized [16].

Multiple-scale expansion
of the Wigner dynamical equation

Plugging the expansion (38) into the dynamical equation

(21–22) results in

 1 

ε
 v.∇'f

0
 + 

 1 

ε
 v.∇'f

1
 + ε0( ∂f

0
 

∂t
 + v.∇f

0
 + v.∇'f

2
) + O( ε)

= ( ∂f
0

 

∂t
)

u
 + ε( ∂f

1
 

∂t
)

u
 , (A.1)

where the ∇U1 contribution is omitted. The right-hand

side of (A.1),

( ∂f 
∂t

)
u

  ≡ 
 i 

 h
_

 
 ∫

BZ

 Ω d3q 

h3  û(q) [f(r, r', p + 
 q 

2 ) −

f(r, r', p − 
 q 

2 )] exp( iq.r' 

 h
_

 
), (A.2)

is the rate of change of f ≈ f
0

 + ε f
1
 due to the Zitterkraft.

We note the scaling

( ∂ 

∂t
)

u
 ∝ Z ∝ 

 1 

 ε 

 . (A.3)

Equating terms of like powers on the two sides of

(A.1) yields a recursive chain of equations, The opposite limit of a heavy guest particle knocked

about in a host medium of light scatterers (me << m) is

called a Brownian particle; one also speaks of a Rayleigh

particle [33–35]. This is shown in Table 4. The particle

interchanges energy with the environment when

bouncing off the light scatterers. This allows for the

thermalisation of the guest particle at the temperature Te

of the environment. The mathematical proof of this

statement is simple because the scattering operator of

Brownian motion is differential instead of integral as

occurs in the Lorentz case, and it is given here.

O(ε−1) v.∇'f
0
 = 0, (A.4)

O(ε−1/2) v.∇'f
1
 = ( ∂f

0
 

∂t
)

u
 , (A.5)

O(ε0)
 ∂f

0
 

∂t
 + v.∇f

0
 + v.∇'f

2
 = ( ∂f

1
 

∂t
)

u
 . (A.6)

At the leading order (ε−1), we find that f0(r, r') does

not depend on the fast variable, so that it will be denoted

by f0(r). In other words, in f0 short-scale details of fW are

dismissed upon zooming out to scales exceeding lc . The

next-order (ε−1/2) equation may be solved in the

distributional sense upon Fourier transformation of f0 and

f1 in the variable r',
Table 4. Light particle (m << me) governed by the Lorentz

integro-differential equation contrasted with heavy (Brownian)

particle (m >> me) governed by the Klein-Kramers differential

equation.f
1
(r, r') = (∫

BZ

 Ω d3q 

h3  û(q) 

 f0(r, p + 
 q 

2 ) − f0(r, p − 
 q 

2 ) 

 −iη + q.v(p) 
 ×

exp( iq.r' 

 h
_

 
))

η → 0
 . (A.7)

Lorentz particle

m  << mass of

environmental scatterers

Brown particle

m  >> mass of

environmental scatterers
Finally, at order ε0, disorder averaging yields 〈f0〉 = f0
and 〈∇'f2〉 = ∇'〈f2〉 is neglected, whence

 ∂f
0
 

∂t
 + v.∇f0 = 〈( ∂f

1
 

∂t
)

u
〉. (A.8)

Large change of p

per scattering event

Small change of p

per scattering event
Now f1 is known from f0 according to (A.7). Thereby a

closed-form equation on the zero-order function f0 is

obtained. The calculation of the right-hand side of (A.8),

which involves the Fourier transform ĈU(q) of CU(s), is

given elsewhere [16, 31]. Equation (39–40) ensues. Integral scattering

operator

(Lorentz 1905)

Differential scattering

operator

(Klein 1922, Kramers 1940)Appendix B
Non-static energyscape
and thermalization

In the perfect Lorentz limit considered in section 7,

energy is exactly conserved in a scattering event, which

is to say that the energy-relaxation time τE is infinite.

                                                          
4 There is no interaction between guest particles which would

mediate energy, which is the usual thermalisation mechanism

in a molecular gas.
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In classical statistical physics, the Brownian particle’s

phase-space occupation f(r, p, t) obeys the Klein-

Kramers kinetic equation [36–39],
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