Six Exponentials Theorem — Irrationality - Archive ouverte HAL Access content directly
Journal Articles Resonance Year : 2022

Six Exponentials Theorem — Irrationality

(1)
1

Abstract

Let p, q, r be three multiplicatively independent positive rational numbers and u a positive real number such that the three numbers pu, qu, ru are rational. Then u is also rational. We prove this result by introducing a parameter L and a square L × L matrix, the entries of which are functions (ps1qs2rs3)(t0+t1u)x. The determinant Δ(x) of this matrix vanishes at a real point x ≠ 0 if and only if u is rational. From the hypotheses, it follows that Δ(1) is a rational number; one easily estimates a denominator of it. An upper bound for ∣Δ(1)∣ follows from the fact that the first L(L − 1)/2 Taylor coefficients of Δ(x) at the origin vanish.
Not file

Dates and versions

hal-03664120 , version 1 (10-05-2022)

Identifiers

Cite

Michel Waldschmidt. Six Exponentials Theorem — Irrationality. Resonance, 2022, 27, pp.599-607. ⟨10.1007/s12045-022-1351-0⟩. ⟨hal-03664120⟩
6 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More