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Abstract.

 

We

 

address

 

the

 

issue

 

of

 

dissipative

 

vs.

 

non-dissipative

 

behavior

 

in

 

a

 

mesoscopic

 

set

 

of

 

coupled

 

elements

 

such

 

as

 

oscillators,

 

with

 

one

 

half

 

having

 

gain

 

and

 

the

 

other

 

half

 

having

 

losses.

 

We

 

introduce

 

a

 

graph

 

with

 

coupling

 

as

 

the

 

graph

 

edges

 

in

 

given

 

fixed

 

number

 

and

 

gain/loss

 

elements

 

as

 

its

 

nodes.

 

This

 

relates

 

to

 

parity-time

 

symmetry,

 

notably

 

in

 

optics,

 

e.g.

 

set

 

of

 

coupled

 

fibers,

 

and

 

more

 

generally

 

to

 

the

 

issue

 

of

 

taming

 

divergence

 

related

 

to

 

imaginary

 

parts

 

of

 

eigenvectors

 

in

 

various

 

network

 

descriptions,

 

for

 

instance

 

biochemical,

 

neuronal,

 

ecological.

 

We

 

thus

 

look

 

for

 

the

 

minimization

 

of

 

the

 

imaginary

 

part

 

of

 

all

 

eigenvalues

 

altogether,

 

with

 

a

 

collective

 

figure

 

of

 

merit.

 

As

 

more

 

edges

 

than

 

gain/loss

 

pairs

 

are

 

introduced,

 

the

 

unbroken

 

cases

 

,

 

i.e.,

 

stable

 

cases

 

with

 

real

 

eigenvalues

 

in

 

spite

 

of

 

gain

 

and

 

loss,

 

become

 

statistically

 

very

 

scarce.

 

A

 

minimization

 

from

 

a

 

random

 

starting

 

point

 

by

 

moving

 

one

 

edge

 

at

 

a

 

time

 

is

 

studied,

 

amounting

 

to

 

investigate

 

how

 

the

 

hugely

 

growing

 

configuration

 

number

 

impedes

 

the

 

attainment

 

of

 

the

 

desired

 

minimally-dissipative

 

target.

 

The

 

minimization

 

path

 

and

 

its

 

apparent

 

stalling

 

point

 

are

 

analyzed

 

in

 

terms

 

of

 

network

 

connectivity

 

metrics.

 

We

 

expand

 

in

 

the

 

end

 

on

 

the

 

relevance

 

in

 

biochemical

 

signaling

 

networks

 

and

 

the

 

so-called

 

“stability-optimized

 

circuits”

 

relevant

 

to

 

neural

 

organization.

1 Introduction

The study of open non-Hermitian mesoscopic systems
offers opportunities to provide more fundamental under-
standing in domains such as biology and neural circuits.
The spirit is to address few-parameters model systems to
get insight on more complex real ones. Usually, a sys-
tem is broken down into elementary constituents: chemical
species in biochemistry, individual fibers in a bunch of
coupled fibers, neurons in neuronal networks, biological
species in ecological networks. We address the cases where
any two elements j, k are coupled in a symmetric fashion:
the nondiagonal elements of the matrix Wjk describing
the coupling are complex conjugate, thus the non-diagonal
part taken separately is Hermitian, it classically defines an
undirected graph, weighted or not.

If we postulate linear physics, it is well known that the
time evolution of the system depends on the matrix eigen-
values. This is at least true for the marginal evolution.
Locally, the evolution dV of the vector V representing the
system takes the form dV = WV dt. Our original point

a e-mail: henri.benisty@institutoptique.fr

takes inspiration from the recent considerations on parity-
time symmetry (PT symmetry), notably in optics, with
a surge of papers on the topic in the last decade [1,2],
with various photonic and electromagnetic embodiments
(coupled rings, coupled microwave resonators, etc.), that
lead the topic to get away from its original quantum-
mechanical area of inception in theoretical physics.
The key point is that there are explicitly dissipative ele-

ments, some with losses and some with gain: the coefficient
on the diagonal of the matrix Wjj thus have an imagi-
nary part of either sign + or −. The underlying system
is clearly open, each element being able to dump power
in some reservoir or to be energy-fed by some “pump”
mechanism (the classical description of lasers), that any-
way belong to the non-explicitly-described part of the
system. These gain/loss elements alone, in isolation, would
evolve in either a vanishing (loss) or diverging (gain) man-
ner, exponentially in time. The striking concept is that
coupling of a sufficient strength between gain and loss
elements results, if the system is PT -symmetrical (i.e., a
permutation exists that exchanges gain and loss elements)
in the restoration of real eigenvalues, and overall in a non-
dissipative behavior. The other way round, starting from
a coupled Hermitian system and adding the gain and loss
starting from 0, there is a range at the start of the pro-
gression during which eigenvalues of W remain real, even
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Fig. 1. Description of the system: (a) a real system consisting
of multi-core fibers, with gain and loss fibers. Couplings are
shown by rods; (b) (left) standard graph presentation; (right)
version for PT symmetry, with top (resp. bottom) rows for
gain (resp. loss) elements.

though the matrix is non-Hermitian. Only beyond some
critical gain and loss value does the system show dissipa-
tive eigenvalues (and corresponding eigenvectors). There
is a phase transition at this critical point, with an unbro-
ken phase before (where energy is exchanged between gain
and loss elements) and a broken phase after. The mathe-
matical situation can often be an exceptional point where
eigenvalues and eigenvectors merge.

The case of very small systems or rather regular ones
(e.g. periodic) being now well-known, we propose to
address here the case of mesoscopic systems. We introduce
an example in Figure 1. In Figure 1a, we propose the case
of multicore fibers, a timely topic [3–6]: 5 out of the 10
cores have gain and 5 have losses. There are typically 2 to
5 coupling (shown by rods) between them. Reality may be
more complex, with optical modes delocalized across many
cores, but the prominence of a few privileged coupling still
holds. Figure 1b is a familiar graph picture of this system.
Figure 1c is a help to the parity-time symmetry aspect
that forms the backbone of the analysis, dispatching gain
and loss elements to give a flavor of the kind of topologi-
cal issues that can arise, e.g. with the sub-networks on the
gain and loss sides, the possibility of separate subblocks
or not, etc.

Our study is specifically focused on how difficult it
is to find the specific “dissipative-less” systems by rear-
rangement from an initially randomly connected graph, by
“rewiring” it but keeping the number of edges constant.
This choice is made because among the cited applica-
tions, those of life science (ecology, neurons, biochemical
signaling) result from non-deterministic schemes (evolu-
tion, selection, growth). So we hope, in a longer-term
effort, to shed some light on how complex systems that
incorporate the equivalent of gain and loss manage to
avoid diverging (maximally dissipative) behavior associ-
ated to imaginary eigenvalues above. Still, it is interesting

to note that nanophotonic systems with gain and mak-
ing use of graph concepts have recently emerged [7,8].
We hypothesize also that the management of multicore
fibers in photonics (currently 10-100 cores), one of the
few ways to conveniently channel light beams with huge
peak powers (highly desirable for laser machining) might
be enlightened by some of our findings.
Readers interested at picking some ideas about where

such stable non-Hermitian evolution matrices play a role
can go directly to the discussion section, Section 7. We
aim at crossing barriers across different disciplinary areas,
notably biochemistry whereby the “amplification” con-
cept familiar in electronics and optics seems delicate. We
attribute this to the basic matter conservation issues of
chemistry. Still, we hope to interest scientists in thermo-
dynamics. While we treat only a “vector amplitude” that
would represent a modal electromagnetic field in photon-
ics or a concentration in biochemistry, with the edges of
the graph carrying some fluxes (∝ WV ), the interesting
addition of thermodynamics is to include potentials and
reservoirs. They enrich the picture and bring interesting
physics also in possibly selecting which network changes
(re-wiring) are most likely. in spite of the broadly accepted
existence of reservoirs that mostly dictate a potential
rather than a flux.
Before detailing the outline of the paper, we finish this

introductory section by reminding the paradigmatic PT -
symmetric model of two coupled waveguides, to give a
more explicit outline and rationale of the larger graph
study.
A paradigmatic model of PT -symmetry consists of

two coupled waveguides, one having gain and the other
balanced losses, so that their individual propagation con-
stants when in isolation would be β̃ = β ± iγ where +γ
is a spatial loss and −γ a spatial gain (in amplitude
terms) [9]. Such modal propagation constants are those
of the solution of the source-free Maxwell equation, usu-
ally cast into a wave equation when all fields of a given
mode have an exp(iβ̃z) dependence along the invariant
z-axis. It is simple to see that in this case the coupled
solutions present either unbroken or broken symmetry. In
a coupled-mode theory at constant frequency ω, denoting
g the complex coupling constant and g∗ its conjugate, one
deals with a pair of coupled first-order equations for the
two amplitudes in the two waveguides,

− i
da1
dz

= (β+ iγ)a1+g∗ a2 − i
da2
dz

= (β− iγ)a2+g a1.

(1)
Assuming a real coupling g = g∗ without loss of generality,
the propagation constants βc1, βc2 of the coupled system
are the eigenvalues of a 2× 2 matrix

W =

[

β + iγ g
g β − iγ

]

. (2)

Real βc1,2 values are found if γ ≤ g (unbroken case), and
complex conjugate ones βc1 = β∗

c2 if γ ≥ g (we do not use
the tilde for this case, we use it only for the individual
elements). The solutions in the former case are similar
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to that of a conservative system (γ = 0) although γ still
impacts the difference ∆β = βc2 − βc1, a feature of inter-
est for optical switching devices [10]. The solutions for
strong gain/loss (γ > g) are the so-called broken sym-
metry ones, the lossy one with Im(βc1) > 0 vanishing at
z → ∞. Only the obviously nonconservative amplified one
with Im(βc2) < 0 then remains.

In the study we present here, we investigate how eas-
ily an initially randomly connected mesoscopic set of N
oscillators (N is typically a few tens, one half has gain, one
half has loss), described by an undirected and unweighted
graph, can be rearranged toward a parity-time symmet-
ric unbroken non-dissipative target. This choice focuses
on the simplest topological problem of edge arrangement
(“re-wiring”) at constant edge number M with the aim
to serve as a reference problem. Our main findings are:
(i) unbroken parity-time symmetric configurations become
increasingly scarce as size (N,M) grows. We try to clarify
why the improvements from a single-edge evolution pro-
cess are impeded by a combinatorial barrier, i.e., a large
configuration space size; (ii) we describe changes in con-
nectivity metrics that appear in the process. They could
orient further graph evolution strategies and broaden the
significance of the results; (iii) as a first step beyond a
“purely topological” approach, we find that main features
are robust to a substantial amount of disorder, either
in coupling strength (nondiagonal entries of W , or edge
weight in graph terms) or in oscillator synchronism (real
part of W diagonal elements). These two kinds of disorder
come in addition to the configuration randomness of the
graph connections.

The main study is in Sections 3 to 6, whose detail comes
at the end of the following Section 2 that provides the
formal problem setup. In the last section, Section 7, of
the paper, we discuss what are network-related concepts
currently manipulated in diverse areas beside optics and
fibers: especially biochemistry (signaling pathways) and
(real) neural networks science. Their stability still raises
open issues, prompting recent investigations about the
kind of underlying “balancing”, i.e., avoidance of diverg-
ing behavior: the expression in terms of eigenvalues real
and imaginary parts is quite similar to ours. One of our
future aims is to look at the applicability of the concepts
we study here in the area of thermodynamics, where the
descriptions with coupled elements and “ports” have been
proposed since a long time [11–14]. There are even older
ideas of dissipation minimization in life, that were put
forward by Lotka [15,16], nearly a century ago, and still
enjoy attention across very different domains [17–19]. Con-
cerning another aspect of life science, we let aside the
important issue of ecological networks for a number of
reasons, in spite of its direct connection to May’s foun-
dational work in stability and random matrices [20]. One
reason is that the discrete nature of the entities is not
as plausible as it is in the above areas: molecule A can
evolve to bind with high affinity to molecules B and C,
and not D and E, etc., as occurs, coarsely speaking, in sig-
naling paths. Similarly, in neurons, connections of similar
weight can be a decent assumption in at least a few cases.
But in ecological network, such coarse assumptions are
quite unrealistic. The weights of the relationships between

species must be quite distributed in almost any realistic
system. At the present limited stage, we tentatively try
to lower the barriers across different chosen disciplinary
areas. For instance in biochemistry, the “amplification”
concept, which is familiar in electronics and optics, seems
more delicate and not so common. We believe that the
issue of matter conservation common in chemistry, is an
important factor of such a situation. Let us take this last
remark to justify why thermodynamics might be a good
general frame here: in biochemical systems, the existence
of reservoirs that mostly dictate a potential rather than a
flux is broadly accepted. Hence, at least for small varia-
tions, the issue of “species amplification” is tractable. As
said above, the next section situates the issues at stake
and the outline of the main study is provided at its end.

2 Coupled oscillators on a graph

and PT -symmetry

In this section, we set up the key elements and we justify
the relevance in relation with parity-time symmetry (PTS)
in optics. Extension of PTS to multiple modes recently
revealed new features [21–23]. However the mode coupling
topology is often constrained in basic settings from pla-
nar guided optics, being typically based on coupled guides
and rings. Therefore, only close neighbors to a given ele-
ment are coupled together. Fiber-based systems offer more
topological freedom [24]. A concept of “laser on a graph”
was recently proposed [7,8]. In this context disordered
fibers are the coupled gain units, operating at a nanopho-
tonic scale. So there are ways to avoid the constraint of
arrays of elements and justifications, in optics in partic-
ular, to consider more general coupling topologies. Novel
optical fibers with multiple cores [3–6] could be an attrac-
tive field of application, capitalizing on early studies such
as [25]. A free space switching example for a multichan-
nel gain unit is proposed as an optical real-world device
in Supplementary Material, see Figure SM1. Optical non-
linearities are often present in terms of gain saturation
and related phenomena. They have a great interest in the
case of PTS [1], and they are also important for efficient
energy transfer among oscillators [26]. But when meso-
scopic systems of sufficient size are considered, the good
knowledge of linear features is needed to understand the
whole behavior. The overall stability and the minimization
of Lyapunov exponents behind divergent behaviors is what
we have in mind. See also Section 7 for a view extended to
the above-mentioned related areas. Let us now focus on
the randomly connected mesoscopic set, as represented in
Figure 1a. A set ofN elements interacts (N even),N/2 ele-
ments have a diagonal eigenvalue with gain and the other
half has loss at an identical absolute level |Im(β̃)| ≡ |γ|.
Their common eigenvalue real part is set at some con-
stant unimportant value. We add the constraint that M
amplitude couplings (graph edges) of identical strength
g connect them. A standard graph representation is thus
given in Figure 1b. We can also, as shown, separate the two
gain and loss subsystems. We then identify their internal
coupling (gain–gain or loss–loss edges of the graph) and
their mutual connections (gain–loss edges).

3
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Fig. 2. Matrix forms of W , assuming that operator P orderly
swaps gain and loss elements (it swaps elements of same num-
ber within their ordered subset). (a) Gain elements are the
N/2 first ones and loss elements the N/2 last ones. To achieve
W∗ = PWP , gain–gain and loss–loss couplings are the same
on both diagonal N/2 × N/2 sub-blocks, while anti-diagonal
sub-blocks (gain–loss couplings) are identical, the role of P
being show by curvy arrows (the matrix symmetry Wjk = Wkj

being that of coupling). (b) Odd/even form used in the paper,
gain–gain and loss–loss edges are even couplings (j–k is even),
gain–loss edges are odd couplings (j–k is odd).

In general, such a network is not parity-time symmetric.
The gain–loss swap (time reversal symmetry) is, mathe-
matically, an involution P with P−1 = P , just as basic
spatial symmetries. For a general matrix W , besides the
symmetry of W coming from the coupling process, the
property W ∗ = PWP ensures that eigenvalues are in
conjugate pairs (eigenvectors being connected by P ). To
bridge with the 2 × 2 case, Figure 2a presents W in a
heuristic basis where N/2 gain elements are the first ones,
N/2 loss elements are the last ones. To obey parity-time
symmetry, the P operator must swap as well the internal
gain–gain and loss–loss couplings, thus these sub-blocks
(similar to adjacency matrices in graph theory) must have
identical non-diagonal patterns. As for the gain–loss edges,
noting that the off-diagonal sub-blocks are swapped as a
whole by P , they must comply with this constraint (curvy
arrows show the role of P ) in addition to W symmetry.
All these conditions result in the pattern shown.

This representation also suggests that each of the four
sub-blocks must behave as the four elements of the 2× 2
case. Hence W can be inferred to exhibit a regime of
gain/loss parameter with unbroken symmetry, before a
split to broken symmetry (dissipative regime). We do not
demonstrate it, but we did check examples. Our scope in
this paper will be to examine paths from a general sym-
metric W starting point with N/2 gain and loss elements,

and to see how the configuration space lends itself to the
attainment of a parity-time symmetric result with a simple
graph evolution, i.e. a “rewiring” of the edges.
Our motivation depends on the domain of application,

as will be seen in more detail in Section 7. We only give
hints here:
(i) For sets of fibers, it would be interesting to keep sig-

nals in a limited amplitude range so that they are free from
nonlinearity, while nevertheless compensating absorptive
losses;
(ii) For neural networks, it would correspond to a

stability criterion in spite of “local” gain;
(iii) For biochemical networks it would also stabilize

the system: this is still a complex issue for many intra-
cell pathways, and also for the larger-scale immunology
interaction networks, which are mediated by multiple
cytokines, interferons, etc.
Based on Figure 2a, we see that the issue is not only to

rearrange one (gain–gain) sub-network to mimic the other
(loss–loss), but also to make it with the proper ordering
so that the gain–loss connections also obey the proper
symmetry between them. However, networks that have to
evolve with some life-related constraints will not “know”
what the gain network looks like when arranging the loss-
network. Hence the sub-block-wise division of the task is
artificial and the attainment of an exact non-dissipative
target is not obvious. Still, sticking to a simple graph evo-
lution rule should shed some light on the actual working
point of networks that undergo intense but partly “blind”
rearrangement strategies in life science or other graph-
theoretic areas: we mean here strategies only guided by a
dissipation minimization target. In other words, we ask
whether in such mesoscopic sets, we can have a “near
parity-time symmetry”.
Practically, we adopt the odd–even (gain–loss) num-

bering convention of Figure 2b. Then, the different edges
are either “even edges” for gain–gain or loss–loss coupling
(diagonal sub-blocks in Fig. 2a), or “odd edges” for the
gain–loss couplings (off-diagonal sub-blocks).
The matrix W of equation (2) is therefore generalized

as follows:

Wkk = real constant + iγ(−1)k (3)

Wjk = g if an edge connects nodes j 6= k. (4)

It can be seen as a symmetric random matrix with M
randomly positioned nonzero nondiagonal elements (all
equal to g) in its upper and lower triangular parts. The
nondiagonal part alone would give only real eigenvalues
βc1 . . . βcN (conservative evolution). But the imaginary
terms on the diagonal generally result in a nonzero com-
plex part. We ask: how easily are the M edges “re-wired”
to make the eigenvalue spectrum as “conservative” as pos-
sible ? In other words, how to maximally frustrate the
dissipation due to iγ(−1)k through edge topology? For
this we need an appropriate test value γt of γ to construct
a figure of merit for the imaginary part of all eigenvalues.
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Considering the general p-norm

FPT =





1

N

∑

k∈{1...N}
|Im (βck(γt))|p





1/p

, (5)

we will use the 2-norm and only mention how the 1-norm
(average of |Im(βck)|) would differ in the following. Our
investigations thus relate to how easily we find topolo-
gies that minimize FPT (ideally bringing it to zero),
with strategies that are blind to the (gain–gain/loss–loss)
sub-graph correlations.

We investigate this issue based on a simple “re-wiring”
process of moving one edge at a time. We provide statis-
tical numerical findings that help understanding what is
governing the process limit (in other words, how one trav-
els through the proverbial haystack in the quest of the
FPT = 0 needle). On the topology side, we mainly look
at graph topology with the mean distance between nodes.
As said above, we distinguish odd edges (gain–loss) and
even ones (gain–gain or loss–loss). We study the mean
distance of the odd and even subgraphs during the FPT

minimization and across different M values.
The next four sections detail the study as follows: In

Section 3, we use examples to convey the main ideas on the
scarcity of FPT = 0 configurations. In Section 4, we study
the topological features: how many of each of the two kinds
of edges are found vs. M , how the topology evolves during
FPT minimization in the overall graph and in the two
related subgraphs, and how the final result depends on M .
In Section 5, we explain how our minimization is impeded
in its FPT → 0 path thanks to the joint statistics of FPT

before and after an edge change, which amounts somehow
to consider edges as a gas of particles constrained to move
along lines and rows of a lattice and interacting with the
complex potential of nodes. In Section 6, we give disorder-
related results as a first step beyond the pure topological
problem. Section 7 considers the relevance to other domain
of network studies, as motivated in Section 1.

3 Scarcity of FPT = 0: small networks

We study mesoscopic sets of N nodes and M edges as
defined in equation (4) through their ability to provide
purely real eigenvalues in the low γ range. Eigenvalue pairs
that start as purely real at low γ later go through an
exceptional point (EP) as γ grows, as in the 2 × 2 basic
case. We first found that γt ≃ (0.36M/N)g was a good
test value to check for a real βc situation before an EP:
results remain largely the same for smaller γt, while matrix
conditioning remains good, working with g = 0.1 in the
rest of the paper.
We give a set of examples with N = 10, M = 9 in

Figures 3a–3c. Case (a) is a typical case with FPT > 0.
Although there is one gain–gain as well as one loss–loss
edge, the gain–loss coupling do not obey P symmetry at
all. Nevertheless eigenvalues βck that contribute to FPT

first evolve with less steep slopes than in the asymp-
totic regime γ → ∞ where eigenvalues are dominated by
the diagonal contribution. Case (b) features FPT = 0.

Fig. 3. (a, b) Two chosen examples with N = 10,M = 9 with
their eigenvalue dispersion and FPT value indicated below, the
test value γt being indicated by a bar. Case (b) has the prop-
erty indicated in Figure 2. (c) The effect of changing the two
even edges, either blue FPT = 0 or red FPT > 0.

We chose a canonical node ordering for which it is obvi-
ous that P (swapping top and bottom) conjugates W
(gain and loss), thus leading to the Im(βck) = 0 situa-
tion. But without such ordering, these symmetriescannot
be distinguished, asseen in the different case of Figure 1b.
Figure 3c compares two cases that differ by two even edges
(blue vs. red). The blue one achieves FPT = 0 (a symme-
try is still clear with this node numbering, with the five
odd edges appearing vertical), while the red one does not
and its dispersion has no symmetry. We explore whether
a one-by-one edge change evolution strategy can more
generally transforman arbitrary graph into a parity-time
symmetric one, for mesoscopic graph sizes. Eigenvalue
distribution in the complex plane is a good guide in ran-
dom matrix studies. In Figure 4, we show for N = 10 and
M = 10 the βc trajectories along short intervals of γ, for
three FPT = 0 cases, three FPT > 0 cases and also the
“hair” from a larger sample. The subsets of γ are chosen
to give the relevant behavior. The three FPT = 0 cases

5
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Fig. 4. Eigenvalues βc in the complex plane for selected real-
izations: three draws that hit FPT = 0, three that do not hit,
in color, for the γ values below/above γt as indicated. Grey
“hair”: βc from a random subset for γ values close to γt as
indicated.

(largest symbols, magenta, red and black hues) are pairs
that are real below an EP, getting outside the real axis at
γ values above this EP (with γEP > γt). The three cases
with green to blue hues are taken from the bottom, the
middle and the top of the distribution of FPT > 0 (see
Fig. 5). Location of βck in random cases from a γ range
close to γt forms a kind of brush around the real axis, a
grey “hair”. These distributions thus show the scarcity of
cases with FPT = 0. We start by a search of fully random
cases in a small system. Figure 5a shows the cumulated
distribution function (cdf) of FPT for 5000 draws of fully
random N = 10,M = 9 and M = 10 graphs (with the
2-norm). For M = 10, for instance, we find six cases
that achieve FPT = 0, then a rather regular rise to unity
across most of this semilog scale. The cdf for the 50 000
individual eigenvalues |Im(βck)| (dashed lines) shows that
there are more individual occurrences of |Im(βck)| = 0, i.e.
below-EP pairs of eigenvalues.
Let us briefly follow a bottom-up approach by con-

sidering subsets that satisfy FPT = 0. A trivial solution
exists for M = N/2, whereby one gain element is con-
nected to the nearest loss element (N/2 odd edges): W ,
in the Figure 2b representation, is then block diagonal
with 2 × 2 blocks exactly as W in equation (2). Start-
ing from this particular graph with N = 10 and M = 5
for which FPT = 0, we study the histograms of FPT for
M = 6–10, for all combinations of (M − 5) ∈ [1, 5] extra
added edges. These histograms, Figures 5b–5f, show a dra-
matically decreasing fraction f0 of FPT = 0 cases, down
to 1.41% for five extra edges (Fig. 5f, M = 10), the case
M = 9 including the examples of Figures 3a–3c. They also
have a gap near FPT = 0 justifying the choice of γt to cal-
culate FPT . This gap means that the “brush density” in
Figure 4d is depleted close to the real axis. Finally, the
value f0 = 0.014 for the M = 10 case but with five “good
edges” can be compared to the fraction of FPT = 0 cases
of 6/5000 = 0.0012 in Figure 5a: the ratio of ∼10 between
them means that these five edges are highly favorable.

Summarizing, this example shows the existence of
FPT = 0 cases and their increasing scarcity as M/N goes
from 0.5 up to 1 and beyond, i.e., as the graph fills up.

Fig. 5. Results from 5000 random draws of anN = 10,M = 10
graph: (a) cumulated distribution function (cdf) of the PTS
figure of merit FPT (blue dots) and of |Im(βc)| for all 50 000
eigenvalues βc (magenta thin line); (b–f) distribution of FPT

for N = 10 and M ∈ [6, 10] with five “odd” edges and all possi-
ble (M−5) other edges (even or odd). The fraction f0 featuring
FPT = 0 is outlined. For M = 10, there are

(

40
5

)

= 658008 con-

figurations: 5 ordered distinct items among 1
2
N(N − 2) = 40

possible edges [45 edges in the set 1 ≤ k < k′ ≤ N , minus the
five odd fixed ones].

What about blocks with FPT = 0 for ratioM/N > 0.5 ?
In Figure 6, such blocks with N = 4 and M = Mblock =
3, 4, 5 are shown. As any even N value can be decom-
posed in N = 4 + N = 2 blocks, this decomposition
then provides a FPT = 0 solution up to M/N = 5/4.
Even though such, disconnected networks are less inter-
esting, their presence or absence in the solution from the
“rewiring” process that we are going to study will be of
interest for network topology.
In the next section, we continue the study in a Monte-

Carlo spirit, we minimize FPT by moving edges.
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Fig. 6. (a–c) Blocks of 4 = 2+2 nodes with Mblock = 3, 4 and
5 edges achieving FPT = 0. Union of such subgraphs, hence
M =

∑

Mblock, gives FPT = 0 graphs within a large range of
M/N ratio.

4 Optimization of mesoscopic sets:

topologies

We present here results for N = 28 and as starting points
random configurations of given M , a typical mesoscopic
regime. Such values imply a huge configuration space, so
the quest of FPT = 0 cannot be an exhaustive one as in
Figure 5. We move edges one by one and minimize FPT .
Edges can be moved with either one fixed node, targeting
an empty element of W from the same column or from the
same line as the initial one, or targeting an initially uncon-
nected pair of nodes. Tests confirmed us that first option
is more efficient. As for the norm to be used in FPT , the
p = 2 norm was found to provide a smoother minimization
than the p = 1 norm. We attribute this to trace invari-
ance: as an edge move does not affect the trace of W and
thus does not affect

∑

k Im(βck), a change in
∑

k |Im(βck)|
occurs only if signs change sufficiently among the set. For
fixed signs, the second sum is constant. Hence the 1-norm
sees no advantage where the 2-norm could still detect one.
We perform typically nit = 12000 iterations. The

dynamics of the minimization is discussed in the next
section. We report here results with empirical conver-
gence, only very marginally affected if nit is doubled for
instance. A number of random starting draws of nR = 200
was found sufficient to get the main trend.
The first topology result is the distribution of the num-

bersMe andMo of even and odd edges, denoted P (N,Me)
and P (N,Mo), Figure 7a, for M values starting at M =
10, belowN/2, toM = 38, thusM/N ≃ 1.36 (the example
of Fig. 1 shows a ratio M/N = 1.3).
We see that the trivial solution of only isolated odd

edges is found up to M = 14 (Mo = M,Me = 0). But the
trends beyond are very different: Me increases faster than
M at the start, and exhibits a clear striped pattern favor-
ing even Me values till Me ∼ 10. This necessarily entails
the checkerboard pattern of the Mo odd edges. During
this phase, the average 〈Mo〉 stalls before rising again.
When M ∼ N , the local patterns (stripe, checkerboard)
get fuzzy, but 〈Me〉 and 〈Mo〉 keep increasing with a nearly
constant separation [〈Mo〉 − 〈Me〉] . N/2.

In Figure 7b, we see that the fraction of FPT = 0 in
the nR draws falls after M ∼ 19, and becomes noisy at
M ∼ 30, with a fraction . 1/nR.

Finally, in Figure 7c, we visualize the distribution
of FPT . With our 2-norm choice, the value is singly
distributed and nonzero for M < N/2. The purely PTS
unbroken situation (FPT = 0) is always achieved for a

Fig. 7. (a) Distribution of numbers Me and Mo of even
and odd edges that minimized FPT , for N = 28, as a
function of M . The two distributions are visually juxta-
posed with minute overlap, the colormap being built from
max [P (N,Me), P (N,Mo)]. The checkerboard or stripe pat-
terns both favor an even Me. The white lines are the averages
〈Mo〉 (circles) and 〈Me〉 (crosses). The trend changes at M =
14 = N/2; (b) fractional abundance of FPT = 0 in the mini-
mized results; (c) colormap of a finely resolved histogram of
FPT showing an expected nonzero result as long as M < N/2,
a single 0 value in the range M = 14 to 16, and a clear increase
above M ≃ 19; 〈FPT 〉 is also indicated in white symbols.

modest range M ≥ N/2. Then, 〈FPT 〉 shows a nearly
linear increase, with a superlinear trend, while the disper-
sion around the average is rather constant in this larger
M range. In this range, if we would double the number of
iterations nit, 〈FPT 〉, would be only very slightly lower.
We now study the connectivity of these “PTS-

optimized” graphs. We mainly focus on the mean distance
measure D of the graphs, and marginally to the cluster-
ing coefficient Cc [27] (we count distances as 1 per edge,
discarding the g = 0.1 value in W that was taken for con-
venience). Both indicate whether “edges attract or repel
edges”. The mean distance D has a generic sensitivity to
the issue, while Cc is more adapted to dense networks as it
senses the presence of cliques (fully connected subgraphs).
We first discuss the mean distance in the PTS-optimized
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Fig. 8. (a–d) Distribution of mean distance plotted as color
map with M as abscissa (10–43), for the post-iterations graphs
and subgraphs, as indicated (full graph, gain nodes, loss nodes,
gain-to-loss edges). The dashed white contours are those of the
cdf. The same contour set (0.05 0.1 0.5 0.9 0.99) is applied in
all maps, with lower curves not visible when the first bin of
the histogram (for D = 0) already comprises a large enough
fraction of all 200 cases; (e–h) same colormaps and contours
from a large set of random graphs, as a pre-iteration reference.

graphs. We next discuss the evolution of D and Cc along
the iteration process.

In Figures 8a–8d, we present the distribution of mean
distances of optimized graphs. We also analyze N/2-sized
subgraphs of gain-only or loss-only nodes (even edges) as
well as the N -sized graph of odd edges only. Figures 8e–8h
present reference data for random graphs. We added cdf
contours because the color map alone does not give a good
idea of the median (cdf= 0.5) and neither of distribution
extremes.

On all the distributions of D, a striped structure
appears. The abundance of specific low distances is intrin-
sic to D, as is their scarcity just below such low distances.
The clusters of Figure 6a, Mblock = 3, have D values
of 4/3 and 2; Figure 6b, Mblock = 4 has only D = 4/3;
Figure 6c, Mblock = 5, has D = 1 and 4/3. The simi-
larities , with a peak in D vs. M typical of the onset
of percolation show that the PTS-optimized graphs still
have a substantial random character. But this peak is at
M/N ∼ 0.9 for the random reference, moving clearly at
N/M > 1 for the PTS-optimized graphs and it is also

more perky. We interpret that N/2 isolated odd edges are
needed for optimization, so that more edges are needed to
reach percolation. As for the graphs of even edges (gain
or loss), with a percolation peak lying at larger M (since
there are M/4 edges for N/2 nodes), the optimized graphs
have smaller mean distances D than their random coun-
terparts. This is mostly an effect of their scarcity, as seen
above. But we see here that it implies smaller connection
paths in these even (gain-only or loss-only) subsets. On the
other hand, mean distances are larger in the mixed case
(d) vs. (h). Here, it might be that the percolation peak
(not reached yet at M = 38) is closer in (d) because there
are more odd edges than at random. It may also be that
more specific structures with larger D show up, e.g., zig-
zag type, chaining the pattern of Figure 6a. We now study
how connectivity evolves during our PTS-optimization.
Figure 9a shows histograms of D along a set of optimiza-
tions from 600 random starts at M = 30, N = 28. Also
shown are the average distances D for whole graph and for
the same subsets as in Figure 8. Besides a large dispersion,
the clear average trend for D (white curve) is an initial
increase, up to n ∼ 400, followed by a weak decrease. The
trend is mostly an increase for the odd edges (gain-to-
loss), while it is a clear decrease for the gain nodes (or
loss nodes). We attribute the increase of D to the sup-
pression of odd edges to the benefit of even ones, e.g. in
small clusters to reach the 5-edges one of Figure 6c from a
6-edges/4-nodes situation. As for the later slow decrease
of D, we conjecture that it corresponds to the quest of
scarce larger clusters with only a handful of the M edges,
but with exact parity-time symmetry, with the idea that
such clusters diminish D.
We finally study the clustering coefficient Cc, related to

cliques, Figure 9b. Its discrete distribution has no dra-
matic feature (Fig. 9b). But its average (white curve)
decreases during the PTS-optimization. The rarefaction
of cliques logically accompanies an increase of D as D
is minimal in cliques. So it fits our conjecture that clus-
ters with too many odd edges are suppressed during the
PTS-optimization.
We conclude that there are good signs of preferen-

tial edge re-organization by the PTS-optimization, mainly
by setting odd (gain–loss) edges somehow in the right
amount: favoring parity-time symmetry but also reach-
ing enough coupling. Subgraphs of gain or loss nodes are
then smaller than at random. We also looked at the aver-
age degree distribution (number of edges from a node).
The optimization appears to cause more spread of the
degree distribution than a random graph, but we found
that the trends of degree vs. M obeys the same Gaussian
mathematical form.
In the next section, we look at the limited convergence

found as soon as M exceeds N/2 by a few units, based on
an analysis of the eigenvalue distribution.

5 The scarcity barrier in the FPT

optimization

We investigate here the configuration space to visualize
how the path to FPT = 0 becomes progressively closed.
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Fig. 9. (a) Evolution of mean distances D during the mini-
mization of FPT for a typical case N = 28,M = 30 close to the
percolation peak of D distribution. The color map is the his-
togram of 600 draws for the whole graph, the solid white line is
its average, and the dash-dotted lines lie at one standard devi-
ation. The magenta line is the average D for the odd edges
(gain to loss), and the red one is the average D for the even
edges (gain nodes and loss nodes exhibit the same trend); (b)
decrease of the average clustering coefficient Cc (white curve),
superimposed on the more discrete histogram of this quantity.
A dashed line at +1 standard deviation is also indicated.

The study could for instance help understanding the
degree of plasticity of real systems vs. M .
Specifically, we study eigenvalues by considering edge

changes in W somehow as elementary allowed motions
of a particle moving on a lattice. The node number has
no meaning in terms of distance, so all single moves
(one edge’s node changes, not the other node of the

edge) are considered on the same footing. The “poten-
tial” of this problem is the complex gain and loss on
W ’s diagonal and the eigenvalues imaginary parts play
a role similar to classical real energies. We thus look
at a many-particle problem but our process proceeds
through single particles. It is then interesting to look at
the joint distribution of FPT for elementary changes: FPT

being generically changed in F ′
PT by an edge change, we

look at the density of configurations ρ(FPT , F
′
PT ) in the

plane FPT , F
′
PT . Such a density ρ must be symmetrical

[ρ(FPT , F
′
PT ) = ρ(F ′

PT , FPT )] along the FPT = F ′
PT line.

Our iterations follow a downward path of the form famil-
iar in recurrence-defined sequences, xj+1 = yj = f(xj),
with an added statistical dimension (the function f is
a density, so we deal with the statistics of the moves).
This density ρ(FPT , F

′
PT ) is obtained numerically: we use

random graphs to sample FPT (abscissa) and list exhaus-
tively all the corresponding points F ′

PT (ordinate) of the
[ 12N(N − 1)−M ] one-node possible changes (targets are
empty elements in W ). The result for a typical case, here
N = 28,M = 24 (Fig. 10a) shows a crescent shape den-
sity ρ, as can be seen by the magenta equidensity contours.
Our minimization of FPT amounts to explore a downward
staircase such as the brown one, starting typically near
the center (more likely), looking for lower values (vertical
shift), and swapping F ′

PT with FPT (horizontal shift to the
bisector) to iterate. A very good fit of the ρ(FPT , F

′
PT ) is

shown by the white lines:

ρ(F, F ′) = exp

(

− (F̄ − F̄0)
2

2σ̄2
1

)

exp

(

−
∣

∣

∣

∣

(F − F ′)

Bσ2

∣

∣

∣

∣

)

(6)

where F̄ = 1√
2
(F +F ′) is the abscissa along the first bisec-

tor and B = 1.2
√
2 (the standard deviations σ1,2 and the

center F̄0 are obtained from the distribution itself, they
are not fitted. It is Gaussian along the F = F ′ line, and
has a sharper exp(−|∆F |/(Bσ2)) shape across that line,
hence crescent-shaped constant contours rotated at 45◦.
The figure shows that as can be expected σ2/σ1 ≫ 1: σ2

concerns all edges while σ1 concerns single-edge changes.
A Gaussian could already be evoked from the distributions
of Figures 5e and 5f, M = 9 or 10. Gaussian distributions
are common in random matrix theory, and we conjec-
ture that this case would be tractable by such advanced
tools (noting that those pioneered by Dyson [28] are
based on thermodynamic analogies). We study the descent
path using equation (6), without the computational limit
of finding its empirical value, following the scheme of
Figure 10b. At a given point of the bisector, lower values
of FPT are desired. But for the points to the left of the cen-
ter, (FPT < F̄0), the available density above the bisector
(along a vertical) becomes much larger than the one avail-
able below. We can for instance focus on the drop of ρ to
one-tenth (0.1) of its value from the crest line, so that most
of available states are taken into account. Integrated densi-
ties (i.e., probabilities) correspond to summation along the

two relevant orange segments denoted S
(±)
nt . It is clear that

in the bottom-left area, there is a large imbalance, i.e.,
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Fig. 10. (a) Colormap of joint occurrence ρ(F, F ′) for a single
edge modification, N = 28, M = 24; magenta contours are at
10−1, 10−2; 10−3 of the maximum. White dashed lines are the
contours of the fitted density, the two relevant standard devi-
ations σ1,2 are outlined; The brown staircase is a sketch for a
minimization path; (b) same colormap with more contours of
the fitted density. The orange segments point at a particular

point of FPT where the model locates 90% of the larger (S
(+)
nt )

and smaller (S
(−)
nt ) values of F ′

PT values. The gray oblique line
is the calculated locus of vertical tangents (gray arrows) and
of horizontal ones also (not drawn).

S
(+)
nt /S

(−)
nt ≫ 1. Thus, desired configurations are scarcer

and the descent must slow down.
Furthermore, we see from the shape of the equiden-

sity lines that the growth of S
(+)
nt is particularly marked

when the local tangent is vertical (grey arrows). The ratio

S
(+)
nt /S

(−)
nt becomes indeed largest if we consider smaller

drops for ρ, e.g., factors of 0.9 or 0.5 instead of 0.1 (graph-
ically harder to visualize, due to closer equidensity lines).
Elementary mathematics in the (F̄ ,∆F ) tilted plane,
looking for unit slope (d∆F /dF̄ = ±1) gives the simple
formula F̄vertic = Bσ2/σ1, thus corresponding to the gray
45◦ line and intersecting the bisector at F vertic

PT = 0.0052.
The effect is even more pronounced at the next contour
F vertic
PT ≃ 0.0020, a decade lower. This bottleneck fits well

with the empirical end of the minimization. M = 24 was
chosen at the limit where our minimization process still
lands in ∼30% of the cases at FPT = 0, but the other
cases mostly land in the range 0.001–0.003. Using this

density is thus a good first-order tool to understand how
the configuration space is traversed.
It has some limits however: as we apply the same pro-

cess to larger M , the bottleneck F vertic
PT becomes lower and

lower, because the ρ “crescent” grows, (the ratio σ1,2/F̄0

grows), pushing the left-side low density contours toward
the origin. However this criterion neglects the large growth
of the configuration space itself and the issue of secondary
minima. The first effect is a slower descent for larger M
(simply revealed by plotting the speed of descent of FPT in
loglog scale). We empirically observe a stop of the descent
around 104 iterations, for which we rather suspect sec-
ondary minima. Clarifying this issue is a scope for future
studies.
To conclude this section, we have evidenced a landscape

for minimization, going from common configurations to
scarce ones. The individual steps in terms of FPT are
determined by σ2 and the overall decrease by σ1. Since it is
easy to empirically get σ1,2, this tool is a good guide. The
trends we found for σ1,2(N,M) vs. N,M in mesoscopic
sets (not shown) are steady and smooth.
We finish our set of rigorous results by studies of

disorder.

6 Weakly disordered systems

We first examine a case of diagonal disorder. We introduce
a spread of the real part of the diagonal elements Wkk

with a uniform distribution in the range [−g/2, g/2] the
width g = 0.1 being the same as the coupling term, thus
a relevant scale for a perturbation study.
The result is shown in Figure 11a for the number

of edges (Me,Mo) and in Figure 11b for FPT . The
former map is hardly distinguishable from the ordered
case, Figure 7a. We tested that a ∼ 2g spread was
needed to blur the checkerboard pattern feature. As for
FPT , the map is mostly similar. A large difference is now
the nonzero FPT value in the minimum region, but the
minimum remains flat on a range comparable to the zero-
FPT range of Figure 7b. Hence, there is a good robustness
of the results with respect to diagonal disorder in terms
of the different regimes and topological trends (mean dis-
tances are also similarly distributed). Only the absolute
value of FPT in the minimum range intrinsically suffers
from disorder. This is similar to the way the detun-
ing of frequencies (real parts here) negatively impacts
couplers [29] following former related studies [30,31].

For the nondiagonal disorder, now, we affected g entries
in all of W by a uniformly distributed factor in the range
[0.9, 1.1], allowing Wkj 6= Wjk.

In Figures 12a and 12b, the resulting trends are again
similar to the ordered case.There is now a tiny drop of
Mo just above M = N/2, and subsequently, at higher M
values, the trends of Me and Mo are slightly closer. This
shows that in this range the imbalance of the abundances,
Me > Mo is dictated by the nondiagonal terms. It is logi-
cal that loosening the landscape of g leads to even edges
being more able to replace odd ones, and to Me/Mo → 1.
As for the figure of merit FPT , it is now able to maintain a
zero value just at M = 14 but instead of being constant in
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Fig. 11. Same maps as in Figure 7 but in the presence of
random diagonal disorder in the range [−g/2, g/2], uniformly.
(a) Distribution of even and odd edge numbers Me and Mo;
(b) figure of merit FPT with the same clear trends.

the first few subsequent M values, the trend is a growth
as soon as M > N/2. The trend of the average, 〈FPT 〉,
also exhibits a piecewise linear growth not seen in above
studies. We found no correlation of the slope changes (at
M ≃ 21,M ≃ 32) with other features (connectivity, how
iteration stalls, etc.).
Finally, in the case of combined diagonal and non-

diagonal disorders, the effects are combined without
specific interaction (see Supplementary Material, Figure
SM2). Only disorder in the imaginary parts affects the
sudden FPT transition at M = N/2 on the low M side,
smearing its evolution (not shown).

7 Relationship with other domains

There are numerous areas for which coupled oscilla-
tors/resonators are a good heuristic basis. The first issue
that comes to mind about a resonator is its damping. We
discuss in this section how the presence of amplification
as well as damping may provide novel approaches, at the
mesoscopic scale studied above (say 5–50 resonators). We
acknowledge that in many cases, resonator networks are
of interest with added nonlinearity, and also that topology
has not been the main emphasis. It is clear that nonlin-
earities are needed to escape the natural fate of a linear
system with room for dissipation/amplification, as pre-
dicted by its eigenvalue and initial eigenvector: to vanish
or to diverge. The Kuramoto set of oscillators [32] is pop-
ular to study biological synchronization, for instance. We

Fig. 12. Same maps as in Figure 7 but in the presence of ran-
dom nondiagonal disorder, with a weight uniformly distributed
in the range [0.9, 1.1] on the nondiagonal element: (a) distri-
bution of even and odd edge numbers Me and Mo; (b) figure
of merit FPT with the same clear trends.

already mentioned Alfred Lotka’s work, who also gave rise
to Lotka-Volterra prey-predator models, common to study
ecological dynamics of networks [33,34] or economic issues
[35] (although their thermodynamic foundations remain
questionable).
An even richer case of coupled resonators arises when

coupled transport properties are concerned, as for example
in mesoscopic and molecular electronic transport. In such
cases, nonlinearities can come from not only from the local
intrinsic nature of the site or from the type of coupling,
but also from quadratic dissipation terms where a fraction
of the energy flux depends quadratically on the matter
transport.
Nevertheless, it is interesting to fully understand the

influence of linear physics, following May’s work [20], with
its pioneering bridge from random matrices to ecological
system. Our ambition here is more modest, but we want
to discuss the interest of these issues in domains chosen
from a literature quest. The criterion we retain is rele-
vance in terms of (i) mesoscopic graphs/networks, (ii) the
presence of amplification/dissipation, and (iii) the rela-
tively obvious interest of stability/minimal dissipation.
For instance, in civil engineering for seismic resistance,
relevant to coupled resonators, the quest is to maximize
dissipation, so we discard it. At later stages of our efforts,
we hope to consider ports in thermodynamics (Sect. 1 [11–
14], cf. Sect. 1) with proper inclusion of potentials. This
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said, our quest led to two areas that relate to the response
to stimuli in living systems: (i) signaling pathways in bio-
chemical organization (biochemical cycles are mesoscopic
and would connect to network thermodynamics [36] and
energy use), and (ii) neural networks.

Since the parity-time symmetry concepts that are the
backbone of the present work are now very popular in
optics, we insert here a short remark on optics and
fiber networks. We pointed out that multicore/multimode
fibers, increasingly studied for information technology [3–
6,24], would be a logical playground for PTS with many
gain/loss elements and variable coupling. We add in Sup-
plementary Material (Fig. SM1) an example of a multi-
channel amplifier. In this example, graph edges are imple-
mented by couplers in free space. The low figure of merit
FPT for an optimally “re-wired” system should result
in minimal dissipation (of converted pump power) and
thus in better efficiency. This “engineering” version could
share the same physics as the self-organized nanophotonic
version of “laser on a graph” [7,8] already cited.
We now discuss the relevance to biochemical networks,
point (i). Biochemical signaling aims at triggering actions
of larger scale (or larger energy budget) than the ini-
tial ones. A good case is expression of specific proteins
in cells being triggered by receptors on their membranes,
with for instance inflammatory effects (due notably to
cytokines). The core of “amplification” here is a con-
trol of the degree of enzymatic/catalytic action. As the
networks for these functions commonly comprise more
than 10 or 20 molecules, the exact knowledge of all cross-
coupling is difficult. Models had to be found by minimizing
the role of unknown factors [37–41]. The core tool still
remains that of coupled differential equations deduced
from each entity operation according to established enzy-
matic rules (referred to as Michaelis–Menten kinetics [42]).
Here, nonequilibrium thermodynamics and Onsager-type
linear coupling is known to apply since long ago [43,44].
As for the cited May’s work [20], the collective stability
depends on the dominant eigenvalues of a linearized sys-
tem [45,46]. Even so, however, a major difference with
our setting is the real-valued variables (chemical concen-
trations) instead of complex ones (oscillatory modal field
amplitudes).

We argue that the equivalence holds because imaginary
numbers in matrices can be replaced by 2 × 2 real anti-
Hermitian blocks (such as [0 1 ;-1 0]). While it is not
apparent in the literature on such networks, their eigen-
value structure could, as for PTS, display exceptional
points and cancellation of amplification (or dissipation)
effects. The point may have escaped attention or it was
preferentially considered in relation with Lyapunov expo-
nents only [47,48]. A related possibility is to include fluxes
as well as the quantities themselves. Dealing with a quan-
tity and its derivative is classical to transform second order
differential equation in first order ones, resulting in com-
plex numbers, dephasing effects, etc. In biochemistry, it
often happens, however, that species such as radicals are
very short-lived so that a common treatment is to consider
a zero concentration for them, also eluding the issue.

Another delicate conceptual point is to admit that
“amplification” does apply [49]. It has been remarked

since some time that the concept needed more attention
in biochemistry. Essentially, except remarkable Belousov–
Zhabotinsky-type chemical oscillations, the basic idea is
that “A triggers B”, e.g. through catalysis. A bona fide
amplification, which is a kind of self-catalysis, is harder
to admit (e.g., a given species appears only on one side
of a reaction equation, not on both, and the kinetics fol-
lows). Trans-amplification could be a word that fits several
domains, when a process that involves a small energy
consumption modulates a process with a much larger
consumption (or generation). Meanwhile, it was recently
recognized that such amplification cases do exist beyond
anecdotal evidence. One remarkable case is the Ca2+ ion
inside neurons [49–51]: an influx triggered from outside (at
membranes via ion channels) can induce further amplifica-
tion through the release of Ca2+ from inner vesicles. This
is much like an electronic amplifier, with vesicles and their
chemical potential playing the role of a power supply to
amplify the input signal. As for the idea of “re-wiring”,
it could correspond to long-term memory and learning in
neuron networks [51].
To apply our concepts to this area in the future, we

suggest two ideas: (a) the field-effect in transistors could
be a good analogy for an amplifier; its core is a chan-
nel whose impedance is modulated by a physical quantity
(concentration or potential). (b) The second idea is to
consider a kind of network where chemical affinities are
very selective, making the absence and presence of cou-
pling similar to the presence or absence of edges in our
PTS graph approach; the small blocks that can favor
the unbroken phase (FPT = 0, see Fig. 6) could be a
good starting point. A more speculative idea concerns
thermodynamics of open systems [52,53]. Consider a set
of muscular fibers as an engine, where energy transits
from gain units (able to recruit chemical power) to loss
units (where waste accumulate) after providing mechani-
cal power and heat. So, the engine would be the odd edges
of our PTS. There would also be a topology issue for the
gain or loss units to avoid unwanted dissipation, which cor-
responds to managing chemical power recruitment on one
side and waste disposal on the other side, to avoid bottle-
necks or crowding, thus to avoid excess amplitudes of the
relevant variables. This suggests that the analogy could
be of interest. (There could even be an entropy aspect of
these issues; we found in the recent work on nonequilib-
rium thermodynamics [54,55] that efficiency fluctuations
had a connection with entropy gain and loss.)
We now discuss the relevance to neural networks,

point (ii). The variable (amplitudes) of interest are now
those measuring the neural activity, typically the electri-
cal spike frequency. It has recently been suggested that
an eigenvalue analysis of neural networks could explain
their emerging properties [56]. Similarly to gain and loss,
these networks have excitatory and inhibitory neurons.
Equilibrating their relative fraction naturally suggests to
consider “balanced” networks [57].
The concept of “stability-optimized circuits” (SOCs,

not to be confused with Self-Organized Criticality) has
been further proposed to explain the capability of such
networks to achieve a complex sequence (motor motion
for a complex move) with minimal overshoot. In this
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approach, the eigenvalues associated to the network
matrix initially cover a disc of complex plane. The stability
is guaranteed when they are brought to a line locus, which,
in the SOCs convention lies along the imaginary axis and
has a real part below unity. The idea looks therefore sim-
ilar to our FPT minimization. The way to suppress the
unwanted eigenvalue component (normal to the targeted
line) in the case of these SOCs makes use of Lyapunov
matrices [58]. At variance with our approach, the coupling
coefficients are widely distributed, so that a large initial
imbalance (gain/loss, thus excitatory/inhibitory neurons)
can be mitigated by a choice of these coefficients. Our
study on disorder, Section 6, is a first bridge to combine
both approaches. To our knowledge, the mathematical
approach behind SOCs, born rather in the context of sig-
nal processing and analysis, has not been considered for
generic coupled systems with physics-related interest.

8 Conclusion

We have addressed the issue of the minimization of dissi-
pation in a mesoscopic network of coupled elements with
balanced gain and loss ones. We have looked at the issue
through the presence of imaginary parts of the eigen-
values, that can vanish in the good cases, or be simply
minimized by “rewiring” the network/graph. In the lan-
guage of parity-time symmetry, the topic which initially
prompted this study, we investigated the capability of
such gain–loss systems to produce unbroken parity-time
symmetric regimes, manifested by zero imaginary parts
of the eigenvalues in spite of the many interacting gain
and loss units. We assume that the systems of interest
have no knowledge of how each (gain/loss) subset is orga-
nized, and cannot use this information to direct their own
reorganization according to the general rule illustrated in
Figure 2. We discussed a figure of merit FPT and remarked
that for mesoscopic sets of N gain+ loss elements with
M ∼ N couplings, most configurations are away from
the FPT = 0 target, forming the proverbial haystack that
impedes the quest of the needle.

We evaluated how, in this context, a basic process per-
forms. We looked at single-node change of an edge, the
simplest method that could be implemented in bottom-up
regulated systems such as living entities. We investigated
how much such a process is able to reach the scarcely
populated regions at the edges of the configuration space.
We found that it would still miss the target in most of
the M > N/2 range. We attempted to clarify the dynam-
ics of the process (Sect. 5) by looking at a diagram of
appropriate joint density of FPT . The reasons for the
stalling of our process are still imperfectly understood.
Notably, the issue of whether it stops due to secondary
minima in the landscape has to be clarified. As for the
topology, the distribution of odd and even edges at the
point where our process stalls was shown to represent
a strong constraint with respect to a random network,
thanks to a study of the graph mean distances and cluster-
ing coefficient. We showed that the conclusion were robust
against a sizable disorder (10%), diagonal (real part) or
nondiagonal. In our final discussion, we underlined the

connections with biochemical networks (signaling path-
ways and related concepts) and with “balanced” neural
networks. Conversely, the successful application of the
mathematical and conceptual framework of “stability-
optimized-circuits” known as SOCs in this area could
also inspire new perspectives for parity-time symmetry
of mesoscopic sets, building on our proposed graph-based
approach.
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