M. Robert-?-laboratoire-d'electrochimie-mole?ulaire, C. , and U. Paris,

, Email: chengui@dgut.edu.cn

, Email: ishitani@ chem.titech.ac.jp Tai

A. Bing-ma-?-laboratoire-d'electrochimie-mole?ulaire, C. , and U. Paris,

C. Fave-?-laboratoire-d'electrochimie-mole?ulaire, C. , and U. Paris,

J. Bonin-?-laboratoire-d'electrochimie-mole?ulaire, C. , and U. Paris,

, Complete contact information is

X. Wang, S. Blechert, and M. Antonietti, Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis, ACS Catal, vol.2012, issue.8, pp.1596-1606

S. Kumar, S. Karthikeyan, and A. F. Lee, g-C 3 N 4 -Based Nanomaterials for Visible Light-Driven Photocatalysis. Catalysts, vol.8, p.74, 2018.

M. Xiao, B. Luo, S. Wang, and L. Wang, Solar energy conversion on g-C 3 N 4 photocatalyst: Light harvesting, charge separation, and surface kinetics, J. Energy Chem, vol.27, issue.4, pp.1111-1123, 2018.

X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen et al., Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light, J. Am. Chem. Soc, vol.131, issue.5, pp.1680-1681, 2009.

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater, vol.8, p.76, 2009.

J. Safaei, N. A. Mohamed, M. F. Mohamad-noh, M. F. Soh, N. A. Ludin et al., Graphitic carbon nitride (g-C 3 N 4 ) electrodes for energy conversion and storage: a review on photoelectrochemical water splitting, solar cells and supercapacitors, J. Mater. Chem. A, vol.6, issue.45, pp.22346-22380, 2018.

M. Shen, L. Zhang, M. Wang, J. Tian, X. Jin et al., Carbon-vacancy modified graphitic carbon nitride: enhanced CO 2 photocatalytic reduction performance and mechanism probing, J. Mater. Chem. A, vol.2019, issue.4, pp.1556-1563

Y. Zheng, J. Liu, J. Liang, M. Jaroniec, and S. Z. Qiao, Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis, Energy Environ. Sci, vol.5, pp.6717-6731, 2012.

N. Mansor, A. B. Jorge, F. Cora, C. Gibbs, R. Jervis et al., Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells, J. Phys. Chem. C, issue.13, pp.6831-6838, 2014.

Y. Wang, X. Wang, and M. Antonietti, Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry, Angew. Chem., Int. Ed, vol.2012, issue.1, pp.68-89

E. Haque, J. W. Jun, S. N. Talapaneni, A. Vinu, and S. H. Jhung, Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol, J. Mater. Chem, issue.48, pp.10801-10803, 2010.

S. P. Lee, Synthesis and Characterization of Carbon Nitride Films for Micro Humidity Sensors, Sensors, vol.8, issue.3, pp.1508-1518, 2008.

J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu et al., Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis, Energy Environ. Sci, vol.2011, issue.3, pp.675-678

S. Roy and E. Reisner, Visible-light driven CO 2 reduction by mesoporous carbon nitride modified with polymeric cobalt phthalocyanine, Angew. Chem., Int. Ed, vol.58, pp.12180-12184, 2019.

B. Molina and L. E. Sansores, Electronic Structure of Six Phases of C 3 N 4 : A theoretical Approach, Mod. Phys. Lett. B, issue.06n07, pp.193-201, 1999.

J. Hawecker, J. Lehn, and R. Ziessel, Photochemical Reduction of Carbon Dioxide to Formate Mediated by Ruthenium Bipyridine Complexes as Homogeneous Catalysts, J. Chem. Soc., Chem. Commun, issue.2, pp.56-58, 1985.

J. Hawecker, J. Lehn, and R. Ziessel, Photochemical and Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide Mediated by (2,2?-bipyridine)tricarbonylchlororhenium(I) and Related Complexes as Homogeneous Catalysts, Helv. Chim. Acta, vol.69, issue.8, 1986.

J. Lehn and R. Ziessel, Photochemical Generation of Carbon Monoxide and Hydrogen by Reduction of Carbon Dioxide and Water under Visible Light Irradiation, Proc. Natl. Acad. Sci. U. S. A, vol.79, issue.2, pp.701-704, 1982.

H. Rao, J. Bonin, and M. Robert, Non-sensitized Selective Photochemical Reduction of CO 2 to CO under Visible Light with an Iron Molecular Catalyst, Chem. Commun, vol.53, pp.2830-2833, 2017.

H. Rao, J. Bonin, and M. Robert, Toward Visible-Light Photochemical CO 2 -to-CH 4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis, J. Phys. Chem. C, issue.25, pp.13834-13839, 2018.

H. Rao, C. Lim, J. Bonin, G. M. Miyake, and M. Robert, Visible-Light-Driven Conversion of CO 2 to CH 4 with an Organic Sensitizer and an Iron Porphyrin Catalyst, J. Am. Chem. Soc, vol.140, issue.51, pp.17830-17834, 2018.

H. Rao, L. C. Schmidt, J. Bonin, and M. Robert, Visible-lightdriven Methane Formation from CO 2 with a Molecular Iron Catalyst, Nature, vol.548, pp.74-77, 2017.

K. E. Dalle, J. Warnan, J. J. Leung, B. Reuillard, I. S. Karmel et al., Electro-and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes, Chem. Rev, vol.2019, issue.4, pp.2752-2875

H. Takeda, C. Cometto, O. Ishitani, and M. Robert, Electrons, Photons, Protons and Earth-Abundant Metal Complexes for Molecular Catalysis of CO 2 Reduction, ACS Catal, vol.7, pp.70-88, 2017.

G. Neri, M. Forster, J. J. Walsh, C. M. Robertson, T. J. Whittles et al., Photochemical CO 2 reduction in water using a co-immobilised nickel catalyst and a visible light sensitiser, Chem. Commun, vol.52, issue.99, pp.14200-14203, 2016.

M. F. Kuehnel, C. D. Sahm, G. Neri, J. R. Lee, K. L. Orchard et al., ZnSe quantum dots modified with a Ni(cyclam) catalyst for efficient visible-light driven CO 2 reduction in water, Chem. Sci, vol.9, issue.9, pp.2501-2509, 2018.

J. J. Walsh, C. Jiang, J. Tang, and A. J. Cowan, Photochemical CO 2 reduction using structurally controlled g-C 3 N 4, Phys. Chem. Chem. Phys, vol.2016, issue.36, pp.24825-24829

K. Maeda, Metal-Complex/Semiconductor Hybrid Photocatalysts and Photoelectrodes for CO 2 Reduction Driven by Visible Light, Adv. Mater, issue.25, p.1808205, 2019.

R. Kuriki and K. Maeda, Development of hybrid photocatalysts constructed with a metal complex and graphitic carbon nitride for visible-light-driven CO 2 reduction, Phys. Chem. Chem. Phys, vol.19, issue.7, pp.4938-4950, 2017.

K. Maeda, K. Sekizawa, and O. Ishitani, A polymeric-semiconductor?metal-complex hybrid photocatalyst for visible-light CO 2 reduction, Chem. Commun, issue.86, pp.10127-10129, 2013.

R. Kuriki, O. Ishitani, and K. Maeda, Unique Solvent Effects on Visible-Light CO 2 Reduction over Ruthenium(II)-Complex/Carbon Nitride Hybrid Photocatalysts, ACS Appl. Mater. Interfaces, vol.8, issue.9, pp.6011-6018, 2016.

R. Kuriki, M. Yamamoto, K. Higuchi, Y. Yamamoto, M. Akatsuka et al., Robust Binding between Carbon Nitride Nanosheets and a Binuclear Ruthenium(II) Complex Enabling Durable, Selective CO 2 Reduction under Visible Light in Aqueous Solution, Angew. Chem., Int. Ed, vol.2017, issue.17, pp.4867-4871

K. Maeda, R. Kuriki, and O. Ishitani, Photocatalytic Activity of Carbon Nitride Modified with a Ruthenium(II) Complex Having Carboxylic-or Phosphonic Acid Anchoring Groups for Visible-light CO 2 Reduction, Chem. Lett, vol.45, issue.2, pp.182-184, 2016.

H. Kasap, C. A. Caputo, B. C. Martindale, R. Godin, V. W. Lau et al., Solar-Driven Reduction of Aqueous Protons Coupled to Selective Alcohol Oxidation with a Carbon Nitride?Molecular Ni Catalyst System, J. Am. Chem. Soc, vol.138, issue.29, pp.9183-9192, 2016.

J. Lin, Z. Pan, and X. Wang, Photochemical Reduction of CO 2 by Graphitic Carbon Nitride Polymers, ACS Sustainable Chem. Eng, vol.2014, issue.3, pp.353-358

J. Zhang and W. Zhang, Superior Photocatalytic Generation of H 2 in Water Medium Through Grafting a Cobalt Molecule Co-Catalyst from Carbon Nitride Nanosheets, ChemCatChem, vol.2019, issue.11, pp.2657-2666

R. Kuriki, K. Sekizawa, O. Ishitani, and K. Maeda, Visible-Light-Driven CO 2 Reduction with Carbon Nitride: Enhancing the Activity of Ruthenium Catalysts, Angew. Chem., Int. Ed, vol.54, issue.8, pp.2406-2409, 2015.

C. Cometto, R. Kuriki, L. Chen, K. Maeda, T. Lau et al., A Carbon Nitride/Fe Quaterpyridine Catalytic System for Photostimulated CO 2 -to-CO Conversion with Visible Light, J. Am. Chem. Soc, vol.140, issue.24, pp.7437-7440, 2018.

Z. Guo, S. Cheng, C. Cometto, E. Anxolabehere-mallart, S. Ng et al., Highly Efficient and Selective Photocatalytic CO 2 Reduction by Iron and Cobalt Quaterpyridine Complexes, J. Am. Chem. Soc, vol.138, issue.30, pp.9413-9416, 2016.

K. Maeda, R. Kuriki, M. Zhang, X. Wang, and O. Ishitani, The effect of the pore-wall structure of carbon nitride on photocatalytic CO 2 reduction under visible light, J. Mater. Chem. A, vol.2014, issue.36, pp.15146-15151

T. S. Miller, A. B. Jorge, T. M. Suter, A. Sella, F. Cora et al., Carbon nitrides: synthesis and characterization of a new class of functional materials, Phys. Chem. Chem. Phys, vol.19, issue.24, pp.15613-15638, 2017.

J. Bonin, M. Chaussemier, M. Robert, and M. Routier, Homogeneous Photocatalytic Reduction of CO 2 to CO Using Iron(0) Porphyrin Catalysts: Mechanism and Intrinsic Limitations, ChemCatChem, vol.6, issue.11, pp.3200-3207, 2014.

J. Bonin, M. Robert, and M. Routier, Selective and Efficient Photocatalytic CO 2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst, J. Am. Chem. Soc, vol.136, issue.48, pp.16768-16771, 2014.

K. Lam, K. Wong, S. Yang, and C. Che, Cobalt and nickel complexes of 2,2?:6?,2?:6?,2?-quaterpyridine as catalysts for electrochemical reduction of carbon dioxide, J. Chem. Soc, issue.7, pp.1103-1107, 1995.

R. Kuriki, C. S. Ranasinghe, Y. Yamazaki, A. Yamakata, O. Ishitani et al., Excited-State Dynamics of Graphitic Carbon Nitride Photocatalyst and Ultrafast Electron Injection to a Ru(II) Mononuclear Complex for Carbon Dioxide Reduction, J. Phys. Chem. C, issue.29, pp.16795-16802, 2018.

W. Yang, R. Godin, H. Kasap, B. Moss, Y. Dong et al.,

A. J. Steier, L. Reisner, E. Durrant, and J. R. , Electron Accumulation Induces Efficiency Bottleneck for Hydrogen Production in Carbon Nitride Photocatalysts, J. Am. Chem. Soc, issue.28, pp.11219-11229, 2019.

Z. Song, Z. Li, L. Lin, Y. Zhang, T. Lin et al., Phenyl-doped graphitic carbon nitride: photoluminescence mechanism and latent fingerprint imaging, Nanoscale, vol.2017, issue.45, pp.17737-17742

P. Huang, J. Huang, S. A. Pantovich, A. D. Carl, T. G. Fenton et al., Selective CO 2 Reduction Catalyzed by Single Cobalt Sites on Carbon Nitride under Visible-Light Irradiation, J. Am. Chem. Soc, vol.140, issue.47, pp.16042-16047, 2018.

I. H. Lee, E. H. Jeoung, M. M. Kreevoy, and . Marcus, Theory of a Parallel Effect on ? for Hydride Transfer Reaction between NAD+ Analogues, J. Am. Chem. Soc, vol.119, issue.11, pp.2722-2728, 1997.

Z. Guo, G. Chen, C. Cometto, B. Ma, H. Zhao et al., Selectivity control of CO versus HCOO ? production in the visible-light-driven catalytic reduction of CO 2 with two cooperative metal sites, Nature Catal, vol.2, pp.801-808, 2019.