J. Sauvage, J. Collin, J. C. Chambron, S. Guillarez, C. Coudret et al., Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties, J. Am Chem. Soc, 1994.

J. H. Acevedo, M. K. Brennaman, and T. J. Meyer, Chemical Approaches to Artificial Photosynthesis. 2, Tailoring Porphyrins and Chlorins for Self-Assembly in Biomimetic Artificial Antenna Systems, vol.44, p.6802, 2005.

N. Aratani, D. Kim, A. Osuka, M. R. Wasielewski, and A. L. Moore, Self-Assembly Strategies for Integrating Light Harvesting and Charge Separation in Artificial Photosynthetic Systems, Acc. Chem. Res, vol.38, p.1890, 1910.

M. Rickhaus, A. V. Jentzsch, L. Tejerina, I. Grübner, M. Jarisek et al., Energy Transfer Dynamics in Metal?Organic Frameworks, J. Am. Chem. Soc, vol.139, p.12767, 2010.

. Ru, Y. Shi, I. Sanchez-molina, C. Cao, T. R. Cook et al., Synthesis and photophysical studies of self-assembled multicomponent supramolecular coordination prisms bearing porphyrin faces, Metallosupramolecular Rack -Type Architectures of Polytopic Hydrazone-Based Ligands: Synthesis, Structural Features, vol.16, p.9390, 2010.

V. Balzani, F. Scandola, . Photochemistry, . Horwood, U. K. Chichester et al., Photochemically induced charge separation at the molecular level. A chromophore-quencher complex containing both an electron donor and an acceptor, For some representative examples, see: (a), vol.22, p.435, 1987.

M. N. Paddon-row, Investigating longrange electron-transfer processes with rigid, covalently linked donor-(norbornylogous bridge)-acceptor systems, and refs. therein. (f), vol.27, 1993.

D. Kumaresan, K. Lebrowsky, and R. H. Schmehl, Photoinduced charge separation and recombination in solution and in gels of a, Curr. Op. Chem. Biol, 1998.

B. Albinsson, J. Martensson, M. Natali, M. Ravaglia, F. Scandola et al., Longrange electron and excitation energy transfer in donor-bridge-acceptor systems, and refs. therein. (j), vol.9, p.138, 2008.

, Asymmetric Role of 1,2,3-Triazole Linkers, J. Phys. Chem. C, 2013.

J. R. Winkler, H. B. Gray, D. Guldi, S. Fukuzumi, C. Curutchet et al., Electron transfer in electron donor-acceptor ensembles containing porphyrins and metalloporphyrins, J. Porphyrins Phthalocyanines, vol.114, p.7378, 2002.

A. L. Jones, M. K. Gish, C. J. Zeman, J. L. Iv;-papanikolas, and K. S. Schanze,

J. Oligomers, . Phys, R. Chem-;-gronheid, A. Stefan, M. Cotlet et al., Exploiting Potential Inversion for Photoinduced Multielectron Transfer and Accumulation of Redox Equivalents in a Molecular Heptad, Reversible Intramolecular Electron Transfer at the Single-Molecule Level Angew. Chem. Int. Ed, vol.121, p.5343, 2003.

V. Balzani, A. Credi, M. Venturi, J. Lehn, M. Natali et al., Photoinduced electron transfer across molecular bridges: electron-and hole-transfer superexchange pathways, Proc. Natl. Acad. Sci., 2002, 99, 4763. (b) Lehn, J.-M. Supramolecular Chemistry -Concepts and Perspectives, vol.16, p.32, 2006.

M. T. Indelli, M. Orlandi, C. Chiorboli, M. Ravaglia, F. Scandola et al., Electron Transfer Across Modular Oligo-pphenylene Bridges in Ru(bpy)2(bpy-phn-DQ) 4+ (n = 1-5) Dyads. Unusual Effects of Bridge Elongation, Biphenylene, vol.116, p.119, 2011.

M. Gilbert and B. Albinsson, Photoinduced charge and energy transfer in molecular wires, pyridinium Assemblies, vol.51, p.845, 2012.

M. N. Paddon-row, Electron Transfer in Chemistry, vol.3, p.179, 2001.

J. Fortage, F. Tuyèras, P. Ochsenbein, F. Puntoriero, F. Nastasi et al., Expanded Pyridiniums: Bis-cyclization of Branched Pyridiniums into Their Fused Polycyclic and Positively Charged Derivatives -Assessing the Impact of Pericondensation on Structural, Electrochemical, Electronic and Photophysical Features, Chem. Eur. J, vol.16, p.11047, 2010.

C. Peltier, C. Adamo, P. P. Lainé, S. Campagna, F. Puntoriero et al., Theoretical Insights into Branched and Fused Expanded Pyridiniums by the Means of Density Functional Theory, J. Phys. Chem. A, vol.114, p.7880, 2010.

. Os, Bis(terpyridine) Chromophores and Expanded Pyridinium Acceptors. Equilibration between MLCT and Charge-Separated Excited States, Inorg. Chem, p.11944, 2013.

J. Fortage, C. Peltier, C. Perruchot, Y. Takemoto, Y. Teki et al., Single-Step versus Stepwise Two-electron Reduction of Polyarylpyridiniums: Insights from the Steric Switching of Redox Potential Compression, Kinetics of Multielectron Transfers and Redox-Induced Structural Changes in N-Aryl-Expanded Pyridiniums: Establishing Their Unusual, vol.134, p.11349, 2012.

T. J. Meyer, A. Juris, V. Balzani, F. Barigelletti, S. Campagna et al., Photochemistry of metal coordination complexes: metal to ligand charge transfer excited states, Photochemistry and Photophysics of Coordination Compounds: Ruthenium. Top. Curr. Chem, vol.58, p.117, 1986.

, Of note, the electronic absorption spectrum of organic FEBP-based units does not change appreciably with the change of the methyl-substitution pattern of its pendant biphenylene group as a proto-spacer, see ref

, The discussion assumes that Koopman theorem (Koopman, T. Physica, 1934, 1, 104) is valid

P. P. Lainé, S. Campagna, and F. Loiseau, Conformationally Gated Photoinduced Processes within Photosensitizer -Acceptor Dyads Based on Ruthenium(II) and

, Osmium(II) Polypyridyl Complexes with an Appended Pyridinium Group

, Chem. Rev, vol.252, p.2552, 2008.

J. K. Mccusker, Femtosecond absorption spectroscopy of transition metal chargetransfer complexes, Acc. Chem. Res, vol.36, p.801, 2003.

H. M. Mcconnell, A. A. Kornyshev, A. M. Kuznetsov, and J. Ulstrup, Theory of Isotropic Hyperfine Interactions in ?-Electron Radicals, Proc. Natl. Acad. Sci, vol.35, p.6799, 1961.

A. Arrigo, A. Santoro, F. Puntoriero, P. P. Lainé, and S. Campagna, Photoinduced electron transfer in donor-bridge-acceptor assemblies: the case of Os(II)-bis(terpyridine)-(bi)pyridinium dyads, Coord. Chem. Rev, vol.109, pp.304-305, 2015.

, The value of 0.34 eV is a low-limit for the singlet-singlet energy transfer, since the energy of the singlet MLCT state is lower than its absorption band maximum, however it can be accepted for this level of approximation and for our aims

, K is orientation factor which accounts for the directional nature of the dipole-dipole interaction (K is 2/3 for random orientation), ? and ? are the luminescence quantum yield and lifetime of the donor, respectively, n is the solvent refractive index, rAB is the distance between donor and acceptor (13 Å for all the species, evaluated from energy minimized computed structures), and JF is the Foerster overlap integral between the luminescence spectrum of the donor, F(v), and the absorption spectrum of the acceptor, ? (v), on an energy scale (cm -1 )

J. W. Verhoeven, M. T. Rawls, G. Kollmannsberger, C. M. Elliott, and U. E. Steiner, On the role of spin correlation in the formation, decay, and detection of long-lived, intramolecular charge-transfer states, J. Photochem. Photobiol. C: Photochem. Rev, p.3485, 2006.

E. A. Weiss, M. J. Tauber, R. F. Kelley, M. J. Ahrens, M. A. Ratner et al., Electron Spin Dynamics as a Controlling Factor for Spin-Selective Charge Recombination in Donor-Bridge-Acceptor Molecules, J. Am. Chem. Soc, vol.127, p.20370, 2005.

P. T. Fay, A. M. Lewis, and D. E. Manolopoulos, Spin-dependent charge recombination along para-phenylene molecular wires, J. Chem. Phys, p.64107, 2017.