H. M. Jhong, S. Ma, and P. J. Kenis, Electrochemical conversion of CO 2 to useful chemicals: current status, remaining challenges, and future opportunities, Curr. Opin. Chem. Eng, 2013.

M. Aresta, A. Dibenedetto, and A. Angelini, Catalysis for the valorization of exhaust carbon: from CO 2 to chemicals, materials, and fuels. Technological use of CO 2, Chem. Rev, vol.114, pp.1709-1742, 2014.

A. Tatin, J. Bonin, and M. Robert, A case for electrofuels, ACS Energy Lett, 1062.

Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design, vol.355, p.4998, 2017.

C. Costentin, M. Robert, and J. Saveánt, Catalysis of the electrochemical reduction of carbon dioxide, Chem. Soc. Rev, vol.42, pp.2423-2436, 2013.

J. Qiao, Y. Liu, F. Hong, and J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels, Chem. Soc. Rev, vol.43, pp.631-675, 2014.

N. D. Loewen, T. V. Neelakantan, and L. A. Berben, Renewable formate from C?H bond formation with CO 2 : using iron carbonyl clusters as electrocatalysts, Acc. Chem. Res, vol.50, 2017.

N. Elgrishi, M. B. Chambers, X. Wang, and M. Fontecave, Molecular polypyridine-based metal complexes as catalysts for the reduction of CO 2, Chem. Soc. Rev, vol.46, pp.761-796, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01446119

K. A. Grice, Carbon dioxide reduction with homogenous early transition metal complexes: Opportunities and challenges for developing CO 2 catalysis, Coord. Chem. Rev, vol.336, pp.78-95, 2017.

D. C. Grills, M. Z. Ertem, M. Mckinnon, K. T. Ngo, and J. Rochford, Mechanistic aspects of CO 2 reduction catalysis with manganese-based molecular catalysts, Coord. Chem. Rev, vol.374, pp.173-217, 2018.

Y. Kuramochi, O. Ishitani, and H. Ishida, Reaction mechanisms of catalytic photochemical CO2 reduction using Re(I) and Ru(II) complexes, Coord. Chem. Rev, vol.373, pp.333-356, 2018.

R. Francke, B. Schille, and M. Roemelt, Homogeneously catalyzed electroreduction of carbon dioxide-Methods, mechanisms, and catalysts, Chem. Rev, vol.118, pp.4631-4701, 2018.

C. Cometto, L. Chen, P. Lo, Z. Guo, K. Lau et al., Highly selective molecular catalysts for the CO 2 -to-CO electrochemical conversion at very low overpotential. Contrasting Fe vs. Co quaterpyridine complexes upon mechanistic studies, ACS Catal, vol.8, pp.3411-3417, 2018.

Z. Guo, S. Cheng, C. Cometto, E. Anxolabehere-mallart, S. M. Ng et al., Highly efficient and selective photocatalytic CO 2 reduction by iron and cobalt quaterpyridine complexes, J. Am. Chem. Soc, vol.138, pp.9413-9416, 2016.

M. Wang, L. Chen, T. Lau, and M. Robert, Hybrid Co quaterpyridine complex /carbon nanotube catalytic material for CO 2 reduction in water, Angew. Chem., Int. Ed, vol.57, pp.7769-7773, 2018.

K. Lam, K. Wong, S. Yang, and C. Che, Cobalt and nickel complexes of 2,2': 6',2'': 6'',2'''-quaterpyridine as catalysts for electrochemical reduction of carbon dioxide, J. Chem. Soc, pp.1103-1107, 1995.

J. Saveánt, Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry

I. Azcarate, C. Costentin, M. Robert, and J. Saveánt, Throughspace charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO 2 -to-CO electrochemical conversion, J. Am. Chem. Soc, vol.138, pp.16639-16644, 2016.

C. Costentin, J. Saveant, and . Multielectron, multistep molecular catalysis of electrochemical reactions: Benchmarking of homogeneous catalysts, vol.1, pp.1226-1236, 2014.