T. A. Nijhuis, M. Makkee, J. A. Moulijn, and B. M. Weckhuysen, The Production of Propene Oxide: Catalytic Processes and Recent Developments, Ind. Eng. Chem. Res, vol.45, pp.3447-3459, 2006.

F. Cavani and J. H. Teles, Sustainability in Catalytic Oxidation: An Alternative Approach or a Structural Evolution, ChemSusChem, vol.2, pp.508-534, 2009.

I. Bertini, H. B. Gray, E. I. Stiefel, and J. S. Valentine, Biological Inorganic Chemistry, 2007.

E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera et al., Copper Active Sites in Biology, Chem. Rev, vol.114, pp.3659-3853, 2014.

K. K. Meier, S. M. Jones, T. Kaper, H. Hansson, M. J. Koetsier et al., Oxygen Activation by Cu LPMOs in Recalcitrant Carbohydrate Polysaccharide Conversion to Monomer Sugars, Chem. Rev, vol.118, pp.2593-2635, 2018.

A. J. Jasniewski and L. Que, Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes, Chem. Rev, vol.118, pp.2554-2592, 2018.

X. Huang and J. T. Groves, Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins, Chem. Rev, vol.118, pp.2491-2553, 2018.

B. Meunier, S. P. Visser, and S. Shaik, Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes, Chem. Rev, vol.104, pp.3947-3980, 2004.

V. Wang, S. Maji, P. Chen, H. K. Lee, S. Yu et al., Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics, Chem. Rev, vol.117, pp.8574-8621, 2017.

S. Kal and L. Que, Dioxygen activation by nonheme iron enzymes with the 2-His-1-carboxylate facial triad that generate high-valent oxoiron oxidants, J Biol Inorg Chem, vol.250, pp.625-652, 2017.

R. Trammell, K. Rajabimoghadam, and I. Garcia-bosch, Copper-Promoted Functionalization of Organic Molecules: from Biologically Relevant Cu/O2 Model Systems to Organometallic Transformations, Chem. Rev, vol.119, pp.2954-3031, 2019.

D. Sheet and T. K. Paine, Aerobic alcohol oxidation and oxygen atom transfer reactions catalyzed by a nonheme iron(ii)-?-keto acid complex, Chem. Sci, vol.7, pp.5322-5331, 2016.

S. Sahu and D. P. Goldberg, Activation of Dioxygen by Iron and Manganese Complexes: A Heme and Nonheme Perspective, J. Am. Chem. Soc, vol.138, pp.11410-11428, 2016.

D. Mansuy, A brief history of the contribution of metalloporphyrin models to cytochrome P450 chemistry and oxidation catalysis, C. R. Chimie, vol.10, pp.392-413, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00126887

H. Jaafar, B. Vileno, A. Thibon, and D. Mandon, Tuning the conversion of cyclohexane into cyclohexanol/one by molecular dioxygen, protons and reducing agents at a single nonporphyrinic iron centre and chemical versatility of the tris(2-pyridylmethyl)amine TPAFeIICl2 complex in mild oxidation chemistry, Dalton Trans, vol.40, pp.92-106, 2010.

P. Leduc, P. Battioni, J. F. Bartoli, and D. Mansuy, A Biomimetic Electrochemical System for the Oxidation of Hydrocarbons by Dioxygen Catalyzed by Manganese-Porphyrins and Imidazole

, ?) An inspiring work, repor?ng an electrochemical system using a Mn porphyrin complex to perform catalytic monooxygenation of hydrocarbons reactions via reductive activation of O 2, Tetrahedron Lett, vol.29, pp.205-208, 1988.

S. E. Creager, S. A. Raybuck, and R. W. Murray, An Efficient Electrocatalytic Model

, ?) A pioneering work, reporting an electrochemical system using a Mn porphyrin complex to perform catalytic epoxidations via reductive activation of O 2, J. Am. Chem. Soc, vol.108, pp.4225-4227, 1986.

S. E. Creager and R. W. Murray, Electrochemical Reactivity of Manganese(II) Porphyrins -Effects of Dioxygen, Benzoic Anhydride, and Axial Ligands, Inorg. Chem, vol.26, pp.2612-2618, 1987.

C. P. Horwitz, S. E. Creager, and R. W. Murray, Electrocatalytic olefin epoxidation using manganese Schiff-base complexes and dioxygen, Inorg. Chem, vol.29, pp.1006-1011, 1990.

M. L. Pegis, C. F. Wise, D. J. Martin, and J. M. Mayer, Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts, Chem. Rev, vol.118, pp.2340-2391, 2018.

Y. Zhao, Y. Wang, F. Wei, P. Liu, and J. , Bioinspired Transition-Metal Complexes as Electrocatalysts for the Oxygen Reduction Reaction, Chem. Eur. J, vol.24, pp.1-15, 2018.

W. Zhang, W. Lai, and R. Cao, Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin-and Corrole-Based Systems, Chem. Rev, vol.117, pp.3717-3797, 2016.

I. López, R. Cao, D. A. Quist, K. D. Karlin, L. Poul et al., Direct Determination of Electron-Transfer Properties of Dicopper-Bound Reduced Dioxygen Species by a Cryo-Spectroelectrochemical Approach, Chem. Eur. J, vol.23, pp.18314-18319, 2017.

C. E. Elwell, N. L. Gagnon, B. D. Neisen, D. Dhar, A. D. Spaeth et al., Copper-Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity, Chem. Rev, vol.117, pp.2059-2107, 2017.

N. Kindermann, C. Günes, S. Dechert, and F. Meyer, Hydrogen Atom Abstraction Thermodynamics of a ?-1,2-Superoxo Dicopper(II) Complex, J. Am. Chem. Soc, vol.139, pp.9831-9834, 2017.

I. López, A. G. Porras-gutiérrez, B. Douziech, L. Wojcik, L. Mest et al., O-O bond cleavage viaelectrochemical reduction of a side-on peroxo dicopper model of hemocyanin, Chem. Commun, vol.54, pp.4931-4934, 2018.

Y. Shiota and K. Yoshizawa, Comparison of the Reactivity of Bis(?-oxo)Cu IICu IIIand Cu IIICu IIISpecies to Methane, Inorg. Chem, vol.48, pp.838-845, 2009.

G. Ali, P. E. Vannatta, D. A. Ramirez, K. M. Light, and M. T. Kieber-emmons, Thermodynamics of a ?-oxo Dicopper(II) Complex for Hydrogen Atom Abstraction, J. Am. Chem. Soc, vol.139, pp.18448-18451, 2017.

S. Fukuzumi, S. Mandal, K. Mase, K. Ohkubo, H. Park et al., Catalytic Four-Electron Reduction of O 2via Rate-Determining Proton-Coupled Electron Transfer to a Dinuclear Cobalt-?-1,2-peroxo Complex, J. Am. Chem. Soc, vol.134, pp.9906-9909, 2012.

D. Dhar and W. B. Tolman, Hydrogen Atom Abstraction from Hydrocarbons by a Copper(III)-Hydroxide Complex, J. Am. Chem. Soc, vol.137, pp.1322-1329, 2015.

G. Passard, D. K. Dogutan, M. Qiu, C. Costentin, and D. G. Nocera, Oxygen Reduction Reaction Promoted by Manganese Porphyrins, ACS Catal, vol.8, pp.8671-8679, 2018.

K. Sengupta, S. Chatterjee, S. Samanta, S. Bandyopadhyay, and A. Dey, ??) In situ monitoring of O 2 reduction at electrodes modified by Fepoprhyrins by spectroscopic and electrochemical methods. The formation of, formally, Fe(V)-oxo species under turnover conditions is evidenced, and the catalytic hydroxylation of the strong C-H bonds of cyclohexane, Inorg. Chem, vol.52, 2000.

K. Sengupta, S. Chatterjee, and A. Dey, Situ Mechanistic Investigation of O2 Reduction by Iron Porphyrin Electrocatalysts Using Surface-Enhanced Resonance Raman Spectroscopy Coupled to Rotating Disk Electrode (SERRS-RDE) Setup, vol.6, pp.1382-1388, 2016.

R. Oliveira, W. Zouari, C. Herrero, F. Banse, B. Schöllhorn et al., ?) Evidence for the electrochemical generation of Fe(III)-peroxo and Fe(III)-hydroperoxo intermediates via sequential e -and H + transfers to an oxygenated Fe(III) porphyrin complex. The oxidation potential value of a heme Fe, Inorg. Chem, vol.55, pp.12204-12210, 2016.

N. Ségaud, E. Anxolabéhère-mallart, K. Sénéchal-david, L. Acosta-rueda, M. Robert et al., ??) A detailed mechanistic study on the activation of dioxygen by a nonheme Fe(II) complex combining cyclic voltammetry, CV simulations and various spectroscopic techniques, The analysis is based on solid data collected on isolated Fe(III)-(hydro)peroxo and Fe(IV)-O reaction intermediates, vol.6, pp.639-647, 2015.

S. Bang, Y. Lee, S. Hong, K. Cho, Y. Nishida et al., Redoxinactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)-peroxo complexes, Nature Chem, vol.6, pp.934-940, 2014.

S. H. Bae, Y. Lee, S. Fukuzumi, and N. W. , Fine Control of the Redox Reactivity of a Nonheme Iron(III)-Peroxo Complex by Binding Redox-Inactive Metal Ions, Angew. Chem. Int. Ed, vol.56, pp.801-805, 2017.

S. Hong, Y. Lee, M. Sankaralingam, A. K. Vardhaman, Y. J. Park et al., Oxo Complex: Synthesis by Dioxygen Activation and Enhancement of Its Oxidizing Power by Binding Scandium Ion, J. Am. Chem. Soc, vol.138, pp.8523-8532, 2016.

J. P. Collman, A. Dey, Y. Yang, S. Ghosh, and R. A. Decreau, O 2 reduction by a functional heme/nonheme bis-iron NOR model complex, Proc. Natl Acad. Sci, vol.106, pp.10528-10533, 2009.