J. Berretta and A. Morillon, Pervasive transcription constitutes a new level of eukaryotic genome regulation, EMBO Rep, vol.10, pp.973-982, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02349854

M. E. Dinger, P. P. Amaral, T. R. Mercer, and J. S. Mattick, Pervasive transcription of the eukaryotic genome: functional indices and conceptual implications, Brief.Funct.Genomic.Proteomic, vol.8, pp.407-423, 2009.

A. R. Forrest and P. Carninci, Whole genome transcriptome analysis, RNA.Biol, vol.6, pp.107-112, 2009.

J. S. Mattick, Non-coding RNAs: the architects of eukaryotic complexity, EMBO Rep, vol.2, pp.986-991, 2001.

J. N. Hutchinson, A. W. Ensminger, C. M. Clemson, C. R. Lynch, J. B. Lawrence et al., A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains, BMC.Genomics, vol.8, p.39, 2007.

V. Tripathi, J. D. Ellis, Z. Shen, D. Y. Song, Q. Pan et al., The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation, Mol.Cell, vol.39, pp.925-938, 2010.

F. Ferri, H. Bouzinba-segard, G. Velasco, F. Hube, and C. Francastel, Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase, Nucleic Acids Res, vol.37, pp.5071-5080, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02127333

C. Maison, D. Bailly, A. H. Peters, J. P. Quivy, D. Roche et al., Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component, Nat.Genet, vol.30, pp.329-334, 2002.

P. A. Latos and D. P. Barlow, Regulation of imprinted expression by macro non-coding RNAs, RNA.Biol, vol.6, pp.100-106, 2009.

S. Schoeftner and M. A. Blasco, Chromatin regulation and non-coding RNAs at mammalian telomeres, Semin.Cell Dev.Biol, vol.21, pp.186-193, 2010.

M. Matzke, T. Kanno, B. Huettel, L. Daxinger, and A. J. Matzke, Targets of RNA-directed DNA methylation, Curr.Opin.Plant Biol, vol.10, pp.512-519, 2007.

C. A. Brosnan and O. Voinnet, The long and the short of noncoding RNAs, Curr.Opin.Cell Biol, vol.21, pp.416-425, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00400302

K. V. Morris, Long antisense non-coding RNAs function to direct epigenetic complexes that regulate transcription in human cells, Epigenetics, vol.4, pp.296-301, 2009.

H. Bouzinba-segard, A. Guais, and C. Francastel, Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function, Proc.Natl.Acad.Sci.U.S.A, vol.103, pp.8709-8714, 2006.

T. A. Allen, K. S. Von, J. A. Goodrich, and J. F. Kugel, The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock, Nat.Struct.Mol.Biol, vol.11, pp.816-821, 2004.

V. T. Nguyen, T. Kiss, A. A. Michels, and O. Bensaude, 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes, Nature, vol.414, pp.322-325, 2001.

Z. Yang, Q. Zhu, K. Luo, and Q. Zhou, The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription, Nature, vol.414, pp.317-322, 2001.

S. L. Gilbert, J. R. Pehrson, and P. A. Sharp, XIST RNA associates with specific regions of the inactive X chromatin, J.Biol.Chem, vol.275, pp.36491-36494, 2000.

A. T. Willingham, A. P. Orth, S. Batalov, E. C. Peters, B. G. Wen et al., A strategy for probing the function of noncoding RNAs finds a repressor of NFAT, Science, vol.309, pp.1570-1573, 2005.

P. Carninci and Y. Hayashizaki, Noncoding RNA transcription beyond annotated genes, Curr.Opin.Genet.Dev, vol.17, pp.139-144, 2007.

S. Griffiths-jones, Annotating noncoding RNA genes, Annu.Rev.Genomics Hum.Genet, vol.8, pp.279-298, 2007.

P. Kapranov, J. Cheng, S. Dike, D. A. Nix, R. Duttagupta et al., RNA maps reveal new RNA classes and a possible function for pervasive transcription, Science, vol.316, pp.1484-1488, 2007.

T. S. Barakat, I. Jonkers, K. Monkhorst, and J. Gribnau, X-changing information on X inactivation, Exp.Cell Res, vol.316, pp.679-687, 2010.

J. Chow and E. Heard, X inactivation and the complexities of silencing a sex chromosome, Curr.Opin.Cell Biol, vol.21, pp.359-366, 2009.

M. Leeb, P. A. Steffen, and A. Wutz, X chromosome inactivation sparked by non-coding RNAs, RNA.Biol, vol.6, pp.94-99, 2009.

N. Brockdorff, A. Ashworth, G. F. Kay, P. Cooper, S. Smith et al., Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome, Nature, vol.351, pp.329-331, 1991.

C. J. Brown, A. Ballabio, J. L. Rupert, R. G. Lafreniere, M. Grompe et al., A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome, Nature, vol.349, pp.38-44, 1991.

C. Chureau, M. Prissette, A. Bourdet, V. Barbe, L. Cattolico et al., Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine, Genome Res, vol.12, pp.894-908, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00427257

P. Clerc and P. Avner, Multiple elements within the Xic regulate random X inactivation in mice, Semin.Cell Dev.Biol, vol.14, pp.85-92, 2003.

G. Borsani, R. Tonlorenzi, M. C. Simmler, L. Dandolo, D. Arnaud et al., Characterization of a murine gene expressed from the inactive X chromosome, Nature, vol.351, pp.325-329, 1991.

N. Brockdorff, A. Ashworth, G. F. Kay, V. M. Mccabe, D. P. Norris et al., The product of the mouse Xist gene is a 15 kb inactive Xspecific transcript containing no conserved ORF and located in the nucleus, Cell, vol.71, pp.515-526, 1992.

J. T. Lee, L. S. Davidow, and D. Warshawsky, Tsix, a gene antisense to Xist at the Xinactivation centre, Nat.Genet, vol.21, pp.400-404, 1999.

H. Marks, J. C. Chow, S. Denissov, K. J. Francoijs, N. Brockdorff et al., High-resolution analysis of epigenetic changes associated with X inactivation, Genome Res, vol.19, pp.1361-1373, 2009.

C. Rougeulle and P. Avner, The role of antisense transcription in the regulation of Xinactivation, Curr.Top.Dev.Biol, vol.63, pp.61-89, 2004.

L. Duret, C. Chureau, S. Samain, J. Weissenbach, and P. Avner, The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene, Science, vol.312, pp.1653-1655, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00427928

E. A. Elisaphenko, N. N. Kolesnikov, A. I. Shevchenko, I. B. Rogozin, T. B. Nesterova et al., A dual origin of the Xist gene from a proteincoding gene and a set of transposable elements, PLoS.One, vol.3, p.2521, 2008.

D. B. Cunningham, D. Segretain, D. Arnaud, U. C. Rogner, and P. Avner, The mouse Tsx gene is expressed in Sertoli cells of the adult testis and transiently in premeiotic germ cells during puberty, Dev.Biol, vol.204, pp.345-360, 1998.

A. Wutz, T. P. Rasmussen, and R. Jaenisch, Chromosomal silencing and localization are mediated by different domains of Xist RNA, Nat.Genet, vol.30, pp.167-174, 2002.

A. Nekrutenko and W. H. Li, Transposable elements are found in a large number of human protein-coding genes, Trends Genet, vol.17, pp.619-621, 2001.

J. Brosius, RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements, Gene, vol.238, pp.115-134, 1999.

H. H. Kazazian, Mobile elements: drivers of genome evolution, Science, vol.303, pp.1626-1632, 2004.

W. Makalowski and Y. Toda, Modulation of host genes by mammalian transposable elements, Genome Dyn, vol.3, pp.163-174, 2007.

A. Jasinska and W. J. Krzyzosiak, Repetitive sequences that shape the human transcriptome, FEBS Lett, vol.567, pp.136-141, 2004.

H. Keren, G. Lev-maor, and G. Ast, Alternative splicing and evolution: diversification, exon definition and function, Nat.Rev.Genet, vol.11, pp.345-355, 2010.

J. Piriyapongsa, N. Polavarapu, M. Borodovsky, and J. Mcdonald, Exonization of the LTR transposable elements in human genome, BMC.Genomics, vol.8, p.291, 2007.

R. J. Britten, Coding sequences of functioning human genes derived entirely from mobile element sequences, Proc.Natl.Acad.Sci.U.S.A, vol.101, pp.16825-16830, 2004.

C. Ender, A. Krek, M. R. Friedlander, M. Beitzinger, L. Weinmann et al., A human snoRNA with microRNA-like functions, Mol.Cell, vol.32, pp.519-528, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00347390

C. K. Vanderpool and S. Gottesman, Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system, Mol.Microbiol, vol.54, pp.1076-1089, 2004.

N. Majdalani, C. K. Vanderpool, and S. Gottesman, Bacterial small RNA regulators, Crit Rev.Biochem.Mol.Biol, vol.40, pp.93-113, 2005.

G. Storz, J. A. Opdyke, and K. M. Wassarman, Regulating bacterial transcription with small RNAs, Cold Spring Harb.Symp.Quant.Biol, vol.71, pp.269-273, 2006.

C. S. Wadler and C. K. Vanderpool, A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide, Proc.Natl.Acad.Sci.U.S.A, vol.104, pp.20454-20459, 2007.

C. Chevalier, S. Boisset, C. Romilly, B. Masquida, P. Fechter et al., Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation, PLoS.Pathog, vol.6, p.1000809, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00526396

R. P. Novick, H. F. Ross, S. J. Projan, J. Kornblum, B. Kreiswirth et al., Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule, EMBO J, vol.12, pp.3967-3975, 1993.

N. Balaban and R. P. Novick, Translation of RNAIII, the Staphylococcus aureus agr regulatory RNA molecule, can be activated by a 3'-end deletion, FEMS Microbiol.Lett, vol.133, pp.155-161, 1995.

L. Janzon and S. Arvidson, The role of the delta-lysin gene (hld) in the regulation of virulence genes by the accessory gene regulator (agr) in Staphylococcus aureus, EMBO J, vol.9, pp.1391-1399, 1990.

D. Dulebohn, J. Choy, T. Sundermeier, N. Okan, and A. W. Karzai, Trans-translation: the tmRNA-mediated surveillance mechanism for ribosome rescue, directed protein degradation, and nonstop mRNA decay, Biochemistry, vol.46, pp.4681-4693, 2007.

R. Gillet and B. Felden, Emerging views on tmRNA-mediated protein tagging and ribosome rescue, Mol.Microbiol, vol.42, pp.879-885, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00718190

P. W. Haebel, S. Gutmann, and N. Ban, Dial tm for rescue: tmRNA engages ribosomes stalled on defective mRNAs, Curr.Opin.Struct.Biol, vol.14, pp.58-65, 2004.

C. S. Hayes and K. C. Keiler, Beyond ribosome rescue: tmRNA and co-translational processes, FEBS Lett, vol.584, pp.413-419, 2010.

K. C. Keiler, Biology of trans-translation, Annu.Rev.Microbiol, vol.62, pp.133-151, 2008.

A. Campalans, A. Kondorosi, and M. Crespi, Enod40, a short open reading framecontaining mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula, Plant Cell, vol.16, pp.1047-1059, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00122324

A. P. Gultyaev and A. Roussis, Identification of conserved secondary structures and expansion segments in enod40 RNAs reveals new enod40 homologues in plants, Nucleic Acids Res, vol.35, pp.3144-3152, 2007.

G. Girard, A. Roussis, A. P. Gultyaev, C. W. Pleij, and H. P. Spaink, Structural motifs in the RNA encoded by the early nodulation gene enod40 of soybean, Nucleic Acids Res, vol.31, pp.5003-5015, 2003.

A. Jenny, O. Hachet, P. Zavorszky, A. Cyrklaff, M. D. Weston et al., A translation-independent role of oskar RNA in early Drosophila oogenesis, Development, vol.133, pp.2827-2833, 2006.

A. Ephrussi, L. K. Dickinson, and R. Lehmann, Oskar organizes the germ plasm and directs localization of the posterior determinant nanos, Cell, vol.66, pp.37-50, 1991.

C. Rongo, E. R. Gavis, and R. Lehmann, Localization of oskar RNA regulates oskar translation and requires Oskar protein, Development, vol.121, pp.2737-2746, 1995.

J. Heasman, O. Wessely, R. Langland, E. J. Craig, and D. S. Kessler, Vegetal localization of maternal mRNAs is disrupted by VegT depletion, Dev.Biol, vol.240, pp.377-386, 2001.

M. Kloc, K. Wilk, D. Vargas, Y. Shirato, S. Bilinski et al., Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopus oocytes, Development, vol.132, pp.3445-3457, 2005.

M. Kloc, Teachings from the egg: new and unexpected functions of RNAs, Mol.Reprod.Dev, vol.76, pp.922-932, 2009.

J. A. White and J. Heasman, Maternal control of pattern formation in Xenopus laevis, J.Exp.Zool.B Mol.Dev.Evol, vol.310, pp.73-84, 2008.

M. E. Horb and G. H. Thomsen, A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation, Development, vol.124, pp.1689-1698, 1997.

J. B. Xanthos, M. Kofron, C. Wylie, and J. Heasman, Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis, Development, vol.128, pp.167-180, 2001.

J. Zhang and M. L. King, Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning, Development, vol.122, pp.4119-4129, 1996.

J. Zhang, D. W. Houston, M. L. King, C. Payne, C. Wylie et al., The role of maternal VegT in establishing the primary germ layers in Xenopus embryos, Cell, vol.94, pp.515-524, 1998.

G. Caretti, R. L. Schiltz, F. J. Dilworth, P. M. Di, P. Zhao et al., The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation, Dev.Cell, vol.11, pp.547-560, 2006.

M. Charette and M. W. Gray, Pseudouridine in RNA: what, where, how, and why, IUBMB.Life, vol.49, pp.341-351, 2000.

S. M. Colley, K. R. Iyer, and P. J. Leedman, The RNA coregulator SRA, its binding proteins and nuclear receptor signaling activity, IUBMB.Life, vol.60, pp.159-164, 2008.

S. M. Colley and P. J. Leedman, SRA and its binding partners: an expanding role for RNAbinding coregulators in nuclear receptor-mediated gene regulation, Crit Rev.Biochem.Mol.Biol, vol.44, pp.25-33, 2009.

E. C. Hatchell, S. M. Colley, D. J. Beveridge, M. R. Epis, L. M. Stuart et al., Mol.Cell, vol.22, pp.657-668, 2006.

F. Hube, G. Velasco, J. Rollin, D. Furling, and C. Francastel, Steroid receptor RNA activator protein binds to and counteracts SRA RNA-mediated activation of MyoD and muscle differentiation, Nucleic Acids Res, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02127321

S. Hussein-fikret and P. J. Fuller, Expression of nuclear receptor coregulators in ovarian stromal and epithelial tumours, Mol.Cell Endocrinol, vol.229, pp.149-160, 2005.

R. B. Lanz, N. J. Mckenna, S. A. Onate, U. Albrecht, J. Wong et al., A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex, Cell, vol.97, pp.17-27, 1999.

R. B. Lanz, B. Razani, A. D. Goldberg, and B. W. O'malley, Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA), Proc.Natl.Acad.Sci.U.S.A, vol.99, pp.16081-16086, 2002.

R. B. Lanz, S. S. Chua, N. Barron, B. M. Soder, F. Demayo et al., Steroid receptor RNA activator stimulates proliferation as well as apoptosis in vivo, Mol.Cell Biol, vol.23, pp.7163-7176, 2003.

E. Leygue, H. Dotzlaw, P. H. Watson, and L. C. Murphy, Expression of the steroid receptor RNA activator in human breast tumors, Cancer Res, vol.59, pp.4190-4193, 1999.

E. Leygue, Steroid receptor RNA activator (SRA1): unusual bifaceted gene products with suspected relevance to breast cancer, Nucl.Recept.Signal, vol.5, p.6, 2007.

Y. Shi, M. Downes, W. Xie, H. Y. Kao, P. Ordentlich et al., Sharp, an inducible cofactor that integrates nuclear receptor repression and activation, Genes Dev, vol.15, pp.1140-1151, 2001.

M. Watanabe, J. Yanagisawa, H. Kitagawa, K. Takeyama, S. Ogawa et al., A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA, EMBO J, vol.20, pp.1341-1352, 2001.

X. Zhao, J. R. Patton, S. L. Davis, B. Florence, S. J. Ames et al., Regulation of nuclear receptor activity by a pseudouridine synthase through posttranscriptional modification of steroid receptor RNA activator, Mol.Cell, vol.15, pp.549-558, 2004.

X. Zhao, J. R. Patton, S. K. Ghosh, N. Fischel-ghodsian, L. Shen et al., Pus3p-and Pus1p-dependent pseudouridylation of steroid receptor RNA activator controls a functional switch that regulates nuclear receptor signaling, Mol.Endocrinol, vol.21, pp.686-699, 2007.

S. Chooniedass-kothari, E. Emberley, M. K. Hamedani, S. Troup, X. Wang et al., The steroid receptor RNA activator is the first functional RNA encoding a protein, FEBS Lett, vol.566, pp.43-47, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02127389

C. Cooper, J. Guo, Y. Yan, S. Chooniedass-kothari, F. Hube et al., Increasing the relative expression of endogenous non-coding Steroid Receptor RNA Activator (SRA) in human breast cancer cells using modified oligonucleotides, Nucleic Acids Res, vol.37, pp.4518-4531, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02127334

E. Emberley, G. J. Huang, M. K. Hamedani, A. Czosnek, D. Ali et al., Identification of new human coding steroid receptor RNA activator isoforms, Biochem.Biophys.Res.Commun, vol.301, pp.509-515, 2003.

F. Hube, J. Guo, S. Chooniedass-kothari, C. Cooper, M. K. Hamedani et al., Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines, DNA Cell Biol, vol.25, pp.418-428, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02127748

M. M. Candeias, L. Malbert-colas, D. J. Powell, C. Daskalogianni, M. M. Maslon et al., P53 mRNA controls p53 activity by managing Mdm2 functions, vol.10, pp.1098-1105, 2008.

N. Naski, M. Gajjar, K. Bourougaa, L. Malbert-colas, R. Fahraeus et al., The p53 mRNA-Mdm2 interaction, Cell Cycle, vol.8, pp.31-34, 2009.

M. Farnebo, V. J. Bykov, and K. G. Wiman, The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer, Biochem.Biophys.Res.Commun, vol.396, pp.85-89, 2010.

N. D. Lakin and S. P. Jackson, Regulation of p53 in response to DNA damage, Oncogene, vol.18, pp.7644-7655, 1999.

M. Schuler and D. R. Green, Mechanisms of p53-dependent apoptosis, Biochem.Soc.Trans, vol.29, pp.684-688, 2001.

H. Jiang, A. Mankodi, M. S. Swanson, R. T. Moxley, and C. A. Thornton, Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons, Hum.Mol.Genet, vol.13, pp.3079-3088, 2004.

L. T. Timchenko, J. W. Miller, N. A. Timchenko, D. R. Devore, K. V. Datar et al., Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy, Nucleic Acids Res, vol.24, pp.4407-4414, 1996.

S. Hirotsune, N. Yoshida, A. Chen, L. Garrett, F. Sugiyama et al., An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene, Nature, vol.423, pp.91-96, 2003.

Y. Yano, R. Saito, N. Yoshida, A. Yoshiki, A. Wynshaw-boris et al., A new role for expressed pseudogenes as ncRNA: regulation of mRNA stability of its homologous coding gene, J.Mol.Med, vol.82, pp.414-422, 2004.

T. A. Gray, L. Hernandez, A. H. Carey, M. A. Schaldach, M. J. Smithwick et al., The ancient source of a distinct gene family encoding proteins featuring RING and C(3)H zinc-finger motifs with abundant expression in developing brain and nervous system, Genomics, vol.66, pp.76-86, 2000.

L. Poliseno, L. Salmena, J. Zhang, B. Carver, W. J. Haveman et al., A codingindependent function of gene and pseudogene mRNAs regulates tumour biology, Nature, vol.465, pp.1033-1038, 2010.

K. Maki, T. Morita, H. Otaka, and H. Aiba, A minimal base-pairing region of a bacterial small RNA SgrS required for translational repression of ptsG mRNA, Mol.Microbiol, vol.76, pp.782-792, 2010.

R. S. Horler and C. K. Vanderpool, Homologs of the small RNA SgrS are broadly distributed in enteric bacteria but have diverged in size and sequence, Nucleic Acids Res, vol.37, pp.5465-5476, 2009.

E. Geisinger, R. P. Adhikari, R. Jin, H. F. Ross, and R. P. Novick, Inhibition of rot translation by RNAIII, a key feature of agr function, Mol.Microbiol, vol.61, pp.1038-1048, 2006.

E. Huntzinger, S. Boisset, C. Saveanu, Y. Benito, T. Geissmann et al., Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression, EMBO J, vol.24, pp.824-835, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-01404709

Y. Benito, F. A. Kolb, P. Romby, G. Lina, J. Etienne et al., Probing the structure of RNAIII, the Staphylococcus aureus agr regulatory RNA, and identification of the RNA domain involved in repression of protein A expression, RNA, vol.6, pp.668-679, 2000.

S. Boisset, T. Geissmann, E. Huntzinger, P. Fechter, N. Bendridi et al., Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism, Genes Dev, vol.21, pp.1353-1366, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167517

A. Toledo-arana, F. Repoila, and P. Cossart, Small noncoding RNAs controlling pathogenesis, Curr.Opin.Microbiol, vol.10, pp.182-188, 2007.

L. S. Waters and G. Storz, Regulatory RNAs in bacteria, Cell, vol.136, pp.615-628, 2009.

D. J. Sengupta, B. Zhang, B. Kraemer, P. Pochart, S. Fields et al., A threehybrid system to detect RNA-protein interactions in vivo, Proc.Natl.Acad.Sci.U.S.A, vol.93, pp.8496-8501, 1996.

A. Dickson, E. Osman, and C. Lorson, A Negatively-Acting Bifunctional RNA Increases Survival Motor Neuron in vitro and in vivo, Gene Ther, 2008.

D. D. Rao, P. B. Maples, N. Senzer, P. Kumar, Z. Wang et al., Enhanced target gene knockdown by a bifunctional shRNA: a novel approach of RNA interference, Cancer Gene Ther, 2010.

T. D. Baughan, A. Dickson, E. Y. Osman, and C. L. Lorson, Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy, Hum.Mol.Genet, vol.18, pp.1600-1611, 2009.

M. J. Wood, M. J. Gait, and H. Yin, RNA-targeted splice-correction therapy for neuromuscular disease, Brain, vol.133, pp.957-972, 2010.

J. P. Bachellerie, J. Cavaille, and A. Huttenhofer, The expanding snoRNA world, Biochimie, vol.84, pp.775-790, 2002.

P. Ganot, M. Caizergues-ferrer, and T. Kiss, The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation, Genes Dev, vol.11, pp.941-956, 1997.

T. Kiss and W. Filipowicz, Exonucleolytic processing of small nucleolar RNAs from pre-mRNA introns, Genes Dev, vol.9, pp.1411-1424, 1995.

M. E. Dinger, K. C. Pang, T. R. Mercer, and J. S. Mattick, Differentiating protein-coding and noncoding RNA: challenges and ambiguities, PLoS.Comput.Biol, vol.4, p.1000176, 2008.

C. Charon, A. B. Moreno, F. Bardou, and M. Crespi, Non-Protein-Coding RNAs and their Interacting RNA-Binding Proteins in the Plant Cell Nucleus, Mol.Plant, vol.3, pp.729-739, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00856221

H. Rohrig, J. Schmidt, E. Miklashevichs, J. Schell, and M. John, Soybean ENOD40 encodes two peptides that bind to sucrose synthase, Proc.Natl.Acad.Sci.U.S.A, vol.99, pp.1915-1920, 2002.

C. Sousa, C. Johansson, C. Charon, H. Manyani, C. Sautter et al., Translational and structural requirements of the early nodulin gene enod40, a short-open reading frame-containing RNA, for elicitation of a cell-specific growth response in the alfalfa root cortex, Mol.Cell Biol, vol.21, pp.354-366, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00157247

J. M. Kugler and P. Lasko, Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis, Fly.(Austin.), vol.3, pp.15-28, 2009.

H. Tekotte and I. Davis, Bruno: a double turn-off for Oskar, Dev.Cell, vol.10, pp.280-281, 2006.

J. Kim-ha, J. L. Smith, and P. M. Macdonald, oskar mRNA is localized to the posterior pole of the Drosophila oocyte, Cell, vol.66, pp.23-35, 1991.

R. Lehmann and C. Nusslein-volhard, Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila, Cell, vol.47, pp.141-152, 1986.

S. Chooniedass-kothari, M. K. Hamedani, S. Troup, F. Hube, and E. Leygue, The steroid receptor RNA activator protein is expressed in breast tumor tissues, Int.J.Cancer, vol.118, pp.1054-1059, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02127760

R. Galvao, L. Mendes-soares, J. Camara, I. Jaco, and M. Carmo-fonseca, Triplet repeats, RNA secondary structure and toxic gain-of-function models for pathogenesis, Brain Res.Bull, vol.56, pp.191-201, 2001.

R. J. Osborne and C. A. Thornton, RNA-dominant diseases, Hum.Mol.Genet, vol.15, issue.2, pp.162-169, 2006.

D. G. Arocena, C. K. Iwahashi, N. Won, A. Beilina, A. L. Ludwig et al., Induction of inclusion formation and disruption of lamin A/C structure by premutation CGG-repeat RNA in human cultured neural cells, Hum.Mol.Genet, vol.14, pp.3661-3671, 2005.

B. Charlet, R. S. Savkur, G. Singh, A. V. Philips, E. A. Grice et al., Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing, Mol.Cell, vol.10, pp.45-53, 2002.

T. H. Ho, R. S. Savkur, M. G. Poulos, M. A. Mancini, M. S. Swanson et al., Colocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophy, J.Cell Sci, vol.118, pp.2923-2933, 2005.

C. Sellier, F. Rau, Y. Liu, F. Tassone, R. K. Hukema et al., Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients, EMBO J, vol.29, pp.1248-1261, 2010.

O. A. Sofola, P. Jin, Y. Qin, R. Duan, H. Liu et al., RNAbinding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS, Neuron, vol.55, pp.565-571, 2007.

J. W. Miller, C. R. Urbinati, P. Teng-umnuay, M. G. Stenberg, B. J. Byrne et al., Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy, EMBO J, vol.19, pp.4439-4448, 2000.

M. Napierala, D. Michalowski, M. M. De, and W. J. Krzyzosiak, Facile FMR1 mRNA structure regulation by interruptions in CGG repeats, Nucleic Acids Res, vol.33, pp.451-463, 2005.

K. Sobczak, M. M. De, G. Michlewski, J. Krol, and W. J. Krzyzosiak, RNA structure of trinucleotide repeats associated with human neurological diseases, Nucleic Acids Res, vol.31, pp.5469-5482, 2003.

Z. Zhang and M. Gerstein, Large-scale analysis of pseudogenes in the human genome, Curr.Opin.Genet.Dev, vol.14, pp.328-335, 2004.

D. Zheng, A. Frankish, R. Baertsch, P. Kapranov, A. Reymond et al., Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription, and evolution, Genome Res, vol.17, pp.839-851, 2007.

E. S. Balakirev and F. J. Ayala, Pseudogenes: are they "junk" or functional DNA?, Annu.Rev.Genet, vol.37, pp.123-151, 2003.

Z. Zhang, N. Carriero, and M. Gerstein, Comparative analysis of processed pseudogenes in the mouse and human genomes, Trends Genet, vol.20, pp.62-67, 2004.

S. A. Korneev, J. H. Park, and M. O'shea, Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene, J.Neurosci, vol.19, pp.7711-7720, 1999.

N. J. Proudfoot, A. Furger, and M. J. Dye, Integrating mRNA processing with transcription, Cell, vol.108, pp.501-512, 2002.

T. Humphrey, G. Christofori, V. Lucijanic, and W. Keller, Cleavage and polyadenylation of messenger RNA precursors in vitro occurs within large and specific 3' processing complexes, EMBO J, vol.6, pp.4159-4168, 1987.

M. Sadofsky and J. C. Alwine, Sequences on the 3' side of hexanucleotide AAUAAA affect efficiency of cleavage at the polyadenylation site, Mol.Cell Biol, vol.4, pp.1460-1468, 1984.

N. J. Proudfoot and G. G. Brownlee, 3' non-coding region sequences in eukaryotic messenger RNA, Nature, vol.263, pp.211-214, 1976.

N. Berteaux, N. Aptel, G. Cathala, C. Genton, J. Coll et al., Adriaenssens, A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression, Mol.Cell Biol, vol.28, pp.6731-6745, 2008.

N. Sonenberg, Cap-binding proteins of eukaryotic messenger RNA: functions in initiation and control of translation, Prog.Nucleic Acid Res.Mol.Biol, vol.35, pp.173-207, 1988.

K. Panzitt, M. M. Tschernatsch, C. Guelly, T. Moustafa, M. Stradner et al., Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA, Gastroenterology, vol.132, pp.330-342, 2007.

I. Seim, S. L. Carter, A. C. Herington, and L. K. Chopin, Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate noncoding RNA gene, BMC.Mol.Biol, vol.9, p.95, 2008.

H. Ren, Y. Li, Z. Tang, S. Yang, Y. Mu et al., Genomic structure, chromosomal localization and expression profile of a porcine long non-coding RNA isolated from long SAGE libraries, Anim Genet, vol.40, pp.499-508, 2009.

E. Memili, Y. K. Hong, D. H. Kim, S. D. Ontiveros, and W. M. Strauss, Murine Xist RNA isoforms are different at their 3' ends: a role for differential polyadenylation, Gene, vol.266, pp.131-137, 2001.

H. R. Cohen and B. Panning, XIST RNA exhibits nuclear retention and exhibits reduced association with the export factor TAP/NXF1, Chromosoma, vol.116, pp.373-383, 2007.

W. Tam, Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA, Gene, vol.274, pp.157-167, 2001.

T. Glaser, D. Housman, W. H. Lewis, D. Gerhard, and C. Jones, A fine-structure deletion map of human chromosome 11p: analysis of J1 series hybrids, Somat.Cell Mol.Genet, vol.15, pp.477-501, 1989.

A. J. Zaug and T. R. Cech, Analysis of the structure of Tetrahymena nuclear RNAs in vivo: telomerase RNA, the self-splicing rRNA intron, and U2 snRNA, RNA, vol.1, pp.363-374, 1995.

A. G. Seto, A. J. Zaug, S. G. Sobel, S. L. Wolin, and T. R. Cech, Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle, Nature, vol.401, pp.177-180, 1999.

G. P. Shumyatsky, S. V. Tillib, D. A. Kramerov, and . Rna, RNA polymerase III transcripts, have a cap-like structure at their 5' end, Nucleic Acids Res, vol.18, pp.6347-6351, 1990.

K. R. Novak, I. Grbesa, M. Ivkic, M. Katdare, and K. Gall-troselj, Curcumin downregulates H19 gene transcription in tumor cells, J.Cell Biochem, vol.104, pp.1781-1792, 2008.

C. I. Seidl, S. H. Stricker, and D. P. Barlow, The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export, EMBO J, vol.25, pp.3565-3575, 2006.

C. I. Brannan, E. C. Dees, R. S. Ingram, and S. M. Tilghman, The product of the H19 gene may function as an RNA, Mol.Cell Biol, vol.10, pp.28-36, 1990.

V. Pachnis, C. I. Brannan, and S. M. Tilghman, The structure and expression of a novel gene activated in early mouse embryogenesis, EMBO J, vol.7, pp.673-681, 1988.

P. Navarro, S. Pichard, C. Ciaudo, P. Avner, and C. Rougeulle, Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivation, Genes Dev, vol.19, pp.1474-1484, 2005.

N. Maeda, T. Kasukawa, R. Oyama, J. Gough, M. Frith et al., Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs, PLoS.Genet, vol.2, p.62, 2006.

M. C. Frith, A. R. Forrest, E. Nourbakhsh, K. C. Pang, C. Kai et al., The abundance of short proteins in the mammalian proteome, PLoS.Genet, vol.2, p.52, 2006.

K. C. Pang, S. Stephen, P. G. Engstrom, K. Tajul-arifin, W. Chen et al., RNAdb--a comprehensive mammalian noncoding RNA database, Nucleic Acids Res, vol.33, pp.125-130, 2005.

J. P. Kastenmayer, L. Ni, A. Chu, L. E. Kitchen, W. C. Au et al., Functional genomics of genes with small open reading frames (sORFs) in S. cerevisiae, Genome Res, vol.16, pp.365-373, 2006.

M. I. Galindo, J. I. Pueyo, S. Fouix, S. A. Bishop, and J. P. Couso, Peptides encoded by short ORFs control development and define a new eukaryotic gene family, PLoS.Biol, vol.5, p.106, 2007.

T. Kondo, S. Plaza, J. Zanet, E. Benrabah, P. Valenti et al., Small peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis, Science, vol.329, pp.336-339, 2010.

T. Ota, Y. Suzuki, T. Nishikawa, T. Otsuki, T. Sugiyama et al., Nat.Genet, vol.36, pp.40-45, 2004.

M. Oyama, C. Itagaki, H. Hata, Y. Suzuki, T. Izumi et al., Analysis of small human proteins reveals the translation of upstream open reading frames of mRNAs, Genome Res, vol.14, pp.2048-2052, 2004.

J. E. Gonzalez-pastor, J. L. San-millan, and F. Moreno, The smallest known gene, Nature, vol.369, p.281, 1994.

S. Steigele, W. Huber, C. Stocsits, P. F. Stadler, and K. Nieselt, Comparative analysis of structured RNAs in S. cerevisiae indicates a multitude of different functions, BMC.Biol, vol.5, p.25, 2007.

C. D. Warden, S. H. Kim, and S. V. Yi, Predicted functional RNAs within coding regions constrain evolutionary rates of yeast proteins, PLoS.One, vol.3, p.1559, 2008.

J. S. Pedersen, G. Bejerano, A. Siepel, K. Rosenbloom, K. Lindblad-toh et al., Identification and classification of conserved RNA secondary structures in the human genome, PLoS.Comput.Biol, vol.2, p.33, 2006.

A. Stark, M. F. Lin, P. Kheradpour, J. S. Pedersen, L. Parts et al., Discovery of functional elements, vol.450, pp.219-232, 2007.