I. B. Rogozin, L. Carmel, M. Csuros, and E. V. Koonin, Origin and evolution of spliceosomal introns, Biol. Direct, vol.7, pp.1-28, 2012.

M. Q. Zhang, Statistical features of human exons and their flanking regions, Hum. Mol. Genet, vol.7, pp.919-932, 1998.

J. Abelson, C. R. Trotta, H. Li, and . Splicing, J. Biol. Chem, vol.273, pp.12685-12688, 1998.

T. R. Cech, Ribozymes, the first 20 years, Biochem. Soc. Trans, vol.30, pp.1162-1166, 2002.

E. V. Koonin, The origin of introns and their role in eukaryogenesis: A compromise solution to the introns-early versus introns-late debate?, Biol. Direct, vol.1, pp.1-22, 2006.

M. P. Hare and S. R. Palumbi, High intron sequence conservation across three mammalian orders suggests functional constraints, Mol. Biol. Evol, vol.20, pp.969-978, 2003.

N. Sasaki-haraguchi, M. K. Shimada, I. Taniguchi, M. Ohno, and A. Mayeda, Mechanistic insights into human pre-mRNA splicing of human ultra-short introns: Potential unusual mechanism identifies G-rich introns, Biochem. Biophys. Res. Commun, vol.423, pp.289-294, 2012.

M. K. Sakharkar, V. T. Chow, K. Ghosh, I. Chaturvedi, P. C. Lee et al., Computational prediction of SEG (single exon gene) function in humans, Front Biosci, vol.10, pp.1382-1395, 2005.

M. K. Sakharkar, P. Kangueane, D. A. Petrov, A. S. Kolaskar, and S. Subbiah, SEGE: A database on "intron less/single exonic" genes from eukaryotes, Bioinformatics, vol.18, pp.1266-1267, 2002.

M. K. Sakharkar, P. Kangueane, . Genome, and . Sege, A database for "intronless" genes in eukaryotic genomes, BMC Bioinform, vol.5, p.67, 2004.

J. Brosius, Genomes were forged by massive bombardments with retroelements and retrosequences, Genetica, vol.107, pp.209-238, 1999.

A. Kumar, An overview of nested genes in eukaryotic genomes, Eukaryot. Cell, vol.8, pp.1321-1329, 2009.

Y. C. Lee and H. H. Chang, The evolution and functional significance of nested gene structures in Drosophila melanogaster, Genome Biol. Evol, vol.5, 1978.

P. Yu, D. Ma, and M. Xu, Nested genes in the human genome, Genomics, vol.86, pp.414-422, 2005.

J. S. Mattick and I. V. Makunin, Small regulatory RNAs in mammals, Hum. Mol. Genet, vol.14, pp.121-132, 2005.

D. Penny, M. P. Hoeppner, A. M. Poole, and D. C. Jeffares, An overview of the introns-first theory, J. Mol. Evol, vol.69, pp.527-540, 2009.

J. O. Westholm and E. C. Lai, Mirtrons: microRNA biogenesis via splicing, Biochimie, vol.93, pp.1897-1904, 2011.

A. M. Monteys, R. M. Spengler, J. Wan, L. Tecedor, K. A. Lennox et al., Structure and activity of putative intronic miRNA promoters, RNA, vol.16, pp.495-505, 2010.

F. Ozsolak, L. L. Poling, Z. Wang, H. Liu, X. S. Liu et al., Chromatin structure analyses identify miRNA promoters, Genes Dev, vol.22, pp.3172-3183, 2008.

U. Braunschweig, S. Gueroussov, A. M. Plocik, B. R. Graveley, and B. J. Blencowe, Dynamic integration of splicing within gene regulatory pathways, Cell, vol.152, pp.1252-1269, 2013.

J. M. Burnette, E. Miyamoto-sato, M. A. Schaub, J. Conklin, and A. J. Lopez, Subdivision of large introns in Drosophila by recursive splicing at nonexonic elements, Genetics, vol.170, pp.661-674, 2005.

A. R. Hatton, V. Subramaniam, and A. J. Lopez, Generation of alternative Ultrabithorax isoforms and stepwise removal of a large intron by resplicing at exon-exon junctions, Mol. Cell, vol.2, pp.787-796, 1998.

S. Ott, Y. Tamada, H. Bannai, K. Nakai, and S. Miyano, Intrasplicing-Analysis of long intron sequences, Pac. Symp. Biocomput, pp.339-350, 2003.

H. Suzuki, T. Kameyama, K. Ohe, T. Tsukahara, and A. Mayeda, Nested introns in an intron: Evidence of multi-step splicing in a large intron of the human dystrophin pre-mRNA, FEBS Lett, vol.587, pp.555-561, 2013.

M. K. Parra, T. L. Gallagher, S. L. Amacher, N. Mohandas, and J. G. Conboy, Deep intron elements mediate nested splicing events at consecutive AG dinucleotides to regulate alternative 3' splice site choice in vertebrate 4.1 genes, Mol. Cell Biol, vol.32, pp.2044-2053, 2012.

S. Brogna and J. Wen, Nonsense-mediated mRNA decay (NMD) mechanisms, Nat. Struct. Mol. Biol, vol.16, pp.107-113, 2009.

M. S. Jurica and M. J. Moore, Pre-mRNA splicing: Awash in a sea of proteins, Mol. Cell, vol.12, pp.5-14, 2003.

J. J. Turunen, E. H. Niemela, B. Verma, and M. J. Frilander, The significant other: Splicing by the minor spliceosome, Wiley Interdiscip. Rev. RNA, vol.4, pp.61-76, 2013.

A. Levine and R. Durbin, A computational scan for U12-dependent introns in the human genome sequence, Nucleic Acids Res, vol.29, pp.4006-4013, 2001.

H. Konig, N. Matter, R. Bader, W. Thiele, and F. Muller, Splicing segregation: The minor spliceosome acts outside the nucleus and controls cell proliferation, Cell, vol.131, pp.718-729, 2007.

H. K. Pessa, C. L. Will, X. Meng, C. Schneider, N. J. Watkins et al., Minor spliceosome components are predominantly localized in the nucleus, Proc. Natl. Acad. Sci, vol.105, pp.8655-8660, 2008.

F. J. Blanco and C. Bernabeu, Alternative splicing factor or splicing factor-2 plays a key role in intron retention of the endoglin gene during endothelial senescence, Aging Cell, vol.10, pp.896-907, 2011.

J. F. Caceres and T. Misteli, Division of labor: Minor splicing in the cytoplasm, Cell, vol.131, pp.645-647, 2007.

M. M. Denis, N. D. Tolley, M. Bunting, H. Schwertz, H. Jiang et al., Escaping the nuclear confines: Signal-dependent pre-mRNA splicing in anucleate platelets, Cell, vol.122, pp.379-391, 2005.

C. Racca, A. Gardiol, T. Eom, J. Ule, A. Triller et al., The neuronal splicing factor nova co-localizes with target RNAs in the dendrite, Front. Neural Circuits, vol.4, p.5, 2010.

J. Glanzer, K. Y. Miyashiro, J. Y. Sul, L. Barrett, B. Belt et al., RNA splicing capability of live neuronal dendrites, Proc. Natl. Acad. Sci, vol.102, pp.16859-16864, 2005.

H. Yoshida, Unconventional splicing of XBP-1 mRNA in the unfolded protein response, Antioxid. Redox Signal, vol.9, pp.2323-2333, 2007.

S. H. Back, K. Lee, E. Vink, and R. J. Kaufman, Cytoplasmic IRE1?-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress, J. Biol. Chem, vol.281, pp.18691-18706, 2006.

U. Ruegsegger, J. H. Leber, and P. Walter, Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response, Cell, vol.107, pp.103-114, 2001.

R. E. Chapman and P. Walter, Translational attenuation mediated by an mRNA intron, Curr. Biol, vol.7, pp.850-859, 1997.

D. P. Bartel, MicroRNAs: Genomics, biogenesis, mechanism, and function, Cell, vol.116, pp.281-297, 2004.

C. H. Chien, Y. M. Sun, W. C. Chang, P. Y. Chiang-hsieh, T. Y. Lee et al., Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data, Nucleic Acids Res, vol.39, pp.9345-9356, 2011.

D. L. Corcoran, K. V. Pandit, B. Gordon, A. Bhattacharjee, N. Kaminski et al., Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data, PLoS One, vol.4, p.5279, 2009.

P. Ramalingam, J. K. Palanichamy, A. Singh, P. Das, M. Bhagat et al., Biogenesis of intronic miRNAs located in clusters by independent transcription and alternative splicing, RNA, vol.20, pp.76-87, 2014.

Y. K. Kim and V. N. Kim, Processing of intronic microRNAs, EMBO J, vol.26, pp.775-783, 2007.

Y. Lee, M. Kim, J. Han, K. H. Yeom, S. Lee et al., MicroRNA genes are transcribed by RNA polymerase II, EMBO J, vol.23, pp.4051-4060, 2004.

C. M. Smith and J. A. Steitz, Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5'-terminal oligopyrimidine gene family reveals common features of snoRNA host genes, Mol. Cell Biol, vol.18, pp.6897-6909, 1998.

M. Falaleeva and S. Stamm, Processing of snoRNAs as a new source of regulatory non-coding RNAs: SnoRNA fragments form a new class of functional RNAs, Bioessays, vol.35, pp.46-54, 2013.

J. G. Ruby, C. H. Jan, and D. P. Bartel, Intronic microRNA precursors that bypass Drosha processing, Nature, vol.448, pp.83-86, 2007.

E. Ladewig, K. Okamura, A. S. Flynt, J. O. Westholm, and E. C. Lai, Discovery of hundreds of mirtrons in mouse and human small RNA data, Genome Res, vol.22, pp.1634-1645, 2012.

M. M. Janas, M. Khaled, S. Schubert, J. G. Bernstein, D. Golan et al., Feed-Forward microprocessing and splicing activities at a microRNA-containing intron, PLoS Genet, 2011.

M. A. Havens, A. A. Reich, D. M. Duelli, and M. L. Hastings, Biogenesis of mammalian microRNAs by a non-canonical processing pathway, Nucleic Acids Res, vol.40, pp.4626-4640, 2012.

D. Wang, M. Lu, J. Miao, T. Li, E. Wang et al., Cepred: Predicting the co-expression patterns of the human intronic microRNAs with their host genes, PLoS One, vol.4, p.4421, 2009.

J. Han, A. M. Denli, and F. H. Gage, The enemy within: Intronic miR-26b represses its host gene, ctdsp2, to regulate neurogenesis, Genes Dev, vol.26, pp.6-10, 2012.

L. C. Hinske, P. A. Galante, W. P. Kuo, and L. Ohno-machado, A potential role for intragenic miRNAs on their hosts' interactome, BMC Genomics, p.533, 2010.

M. A. Havens, A. A. Reich, and M. L. Hastings, Drosha promotes splicing of a pre-microRNA-like alternative exon, PLoS Genet, vol.10, p.1004312, 2014.

L. Granat-tamir, N. Shomron, J. Sperling, and R. Sperling, Interplay between pre-mRNA splicing and microRNA biogenesis within the supraspliceosome, Nucleic Acids Res, vol.42, pp.4640-4651, 2014.

Y. Zhang, X. O. Zhang, T. Chen, J. F. Xiang, Q. F. Yin et al., Circular intronic long noncoding RNAs. Mol. Cell, vol.51, pp.792-806, 2013.

J. U. Guo, V. Agarwal, H. Guo, and D. P. Bartel, Expanded identification and characterization of mammalian circular RNAs, Genome Biol, vol.15, p.409, 2014.

T. B. Hansen, T. I. Jensen, B. H. Clausen, J. B. Bramsen, B. Finsen et al., Natural RNA circles function as efficient microRNA sponges, Nature, vol.495, pp.384-388, 2013.

M. Pheasant and J. S. Mattick, Raising the estimate of functional human sequences, Genome Res, vol.17, pp.1245-1253, 2007.

G. Ast, The alternative genome, Sci. Am, vol.292, pp.40-47, 2005.

C. W. Sugnet, W. J. Kent, M. Ares, . Jr, and D. Haussler, Transcriptome and genome conservation of alternative splicing events in humans and mice, Pac. Symp. Biocomput, vol.9, pp.66-77, 2004.

D. A. De-lima-morais and P. M. Harrison, Large-scale evidence for conservation of NMD candidature across mammals, PLoS One, vol.5, p.11695, 2010.

P. T. Buckley, M. T. Lee, J. Y. Sul, K. Y. Miyashiro, T. J. Bell et al., Cytoplasmic intron sequence-retaining transcripts can be dendritically targeted via ID element retrotransposons, Neuron, vol.69, pp.877-884, 2011.

V. Calvanese, M. Mallya, R. D. Campbell, and B. Aguado, Regulation of expression of two LY-6 family genes by intron retention and transcription induced chimerism, BMC Mol. Biol, vol.9, p.81, 2008.

J. J. Wong, W. Ritchie, O. A. Ebner, M. Selbach, J. W. Wong et al., Orchestrated intron retention regulates normal granulocyte differentiation, Cell, vol.154, pp.583-595, 2013.

U. Braunschweig, N. L. Barbosa-morais, Q. Pan, E. N. Nachman, B. Alipanahi et al., Widespread intron retention in mammals functionally tunes transcriptomes, Genome Res, vol.24, pp.1774-1786, 2014.

H. Kurio, E. Murayama, T. Kaneko, Y. Shibata, T. Inai et al., Intron retention generates a novel isoform of CEACAM6 that may act as an adhesion molecule in the ectoplasmic specialization structures between spermatids and sertoli cells in rat testis, Biol. Reprod, vol.79, pp.1062-1073, 2008.

P. T. Buckley, M. Khaladkar, J. Kim, and J. Eberwine, Cytoplasmic intron retention, function, splicing, and the sentinel RNA hypothesis, Wiley Interdiscip. Rev. RNA, vol.5, pp.223-230, 2014.

S. Chooniedass-kothari, E. Emberley, M. K. Hamedani, S. Troup, X. Wang et al., The steroid receptor RNA activator is the first functional RNA encoding a protein, FEBS Lett, vol.566, pp.43-47, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02127389

C. Cooper, D. Vincett, Y. Yan, M. K. Hamedani, Y. Myal et al., Steroid receptor RNA activator bi-faceted genetic system: Heads or Tails?, Biochimie, vol.93, 1973.

M. E. Dinger, K. C. Pang, T. R. Mercer, and J. S. Mattick, Differentiating protein-coding and noncoding RNA: Challenges and ambiguities, PLoS Comput. Biol, 2008.

M. E. Dinger, D. K. Gascoigne, and J. S. Mattick, The evolution of RNAs with multiple functions, Biochimie, vol.93, 2011.

C. Francastel and F. Hube, Coding or non-coding: Need they be exclusive?, Biochimie, vol.93, pp.6-7, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02127324

F. Hube, J. Guo, S. Chooniedass-kothari, C. Cooper, M. K. Hamedani et al., Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines, DNA Cell Biol, vol.25, pp.418-428, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02127748

F. Hube, G. Velasco, J. Rollin, D. Furling, and C. Francastel, Steroid receptor RNA activator protein binds to and counteracts SRA RNA-mediated activation of MyoD and muscle differentiation, Nucleic Acids Res, vol.39, pp.513-525, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02127321

D. Ulveling, C. Francastel, and F. Hube, Identification of potentially new bifunctional RNA based on genome-wide data-mining of alternative splicing events, Biochimie, vol.93, pp.2024-2027, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02127774

D. Ulveling, C. Francastel, and F. Hube, When one is better than two: RNA with dual functions, Biochimie, vol.93, pp.633-644, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02127323

R. B. Lanz, N. J. Mckenna, S. A. Onate, U. Albrecht, J. Wong et al., A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex, Cell, vol.97, pp.17-27, 1999.

R. B. Lanz, B. Razani, A. D. Goldberg, and B. W. O'malley, Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA), Proc. Natl. Acad. Sci, vol.99, pp.16081-16086, 2002.

C. Cooper, J. Guo, Y. Yan, S. Chooniedass-kothari, F. Hube et al., Increasing the relative expression of endogenous non-coding Steroid Receptor RNA Activator (SRA) in human breast cancer cells using modified oligonucleotides, Nucleic Acids Res, vol.37, pp.4518-4531, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02127334

E. Emberley, G. J. Huang, M. K. Hamedani, A. Czosnek, D. Ali et al., Identification of new human coding steroid receptor RNA activator isoforms, Biochem. Biophys. Res. Commun, vol.301, pp.509-515, 2003.

Q. Xu, D. Walker, A. Bernardo, J. Brodbeck, M. E. Balestra et al., Intron-3 retention/splicing controls neuronal expression of apolipoprotein E in the CNS, J. Neurosci, vol.28, pp.1452-1459, 2008.

K. Hashimoto, E. Ishida, S. Matsumoto, N. Shibusawa, S. Okada et al., A liver X receptor (LXR)-? alternative splicing variant (LXRBSV) acts as an RNA co-activator of LXR-?, Biochem. Biophys. Res. Commun, vol.390, pp.1260-1265, 2009.