D. Britz and J. Strutwolf, Digital Simulation in Electrochemistry, 2016.

, General and detailed overview of the digital simulations utilised for electrochemistry

Z. Samec, Dynamic electrochemistry at the interface between two immiscible electrolytes, Electrochimica Acta, vol.84, pp.21-28, 2012.

P. Peljo and H. H. Girault, Electrochemistry at Liquid/Liquid Interfaces. In Encyclopedia of Analytical Chemistry, 2012.

H. Girault, Electroanalytical Chemistry: A Series of Advances, vol.2010, pp.1-104

S. Liu, Q. Li, and Y. Shao, Electrochemistry at micro-and nanoscopic liquid/liquid interfaces, Chemical Society Reviews, vol.40, pp.2236-2253, 2011.

*. Arrigan, D. Herzog, and G. , Theory of electrochemistry at miniaturised interfaces between two immiscible electrolyte solutions. Current Opinion in Electrochemistry, vol.1, pp.66-72, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01795586

, More detailed description of both experimental and theoretical progress for electrochemistry at miniaturised liquid|liquid interfaces

S. Amemiya, Y. Wang, and M. V. Mirkin, Chapter 1 Nanoelectrochemistry at the liquid/liquid interfaces, The Royal Society of Chemistry, vol.12, pp.1-43

F. M. Zanotto, R. A. Fernández, and S. A. Dassie, Theoretical model of ion transfer-electron transfer coupled reactions at the thick-film modified electrodes, Journal of Electroanalytical Chemistry, vol.784, pp.25-32, 2017.

, Theory of coupling of ET-IT reactions at thick-film modified electrodes how these two processes interrelate, particularly with respect to the resultant i-V signal

A. Lewenstam, Non-equilibrium potentiometry-the very essence, Journal of Solid State Electrochemistry, vol.15, pp.15-22, 2011.

R. Ishimatsu, A. Izadyar, B. Kabagambe, Y. Kim, J. Kim et al., Electrochemical Mechanism of Ion-Ionophore Recognition at Plasticized Polymer Membrane/Water Interfaces, Journal of the American Chemical Society, vol.133, pp.16300-16308, 2011.

M. B. Garada, B. Kabagambe, and S. Amemiya, Extraction or Adsorption? Voltammetric Assessment of Protamine Transfer at Ionophore-Based Polymeric Membranes, Analytical Chemistry, vol.87, pp.5348-5355, 2015.

D. Yuan, M. Cuartero, G. A. Crespo, and E. Bakker, Voltammetric Thin-Layer IonophoreBased Films: Part 2. Semi-Empirical Treatment, Analytical Chemistry, vol.89, pp.595-602, 2017.

D. Yuan, M. Cuartero, G. A. Crespo, and E. Bakker, Voltammetric Thin-Layer IonophoreBased Films: Part 1. Experimental Evidence and Numerical Simulations, Analytical Chemistry, vol.89, pp.586-594, 2017.

, Model for thin-layer polymeric ionophore based films predicts between two modes: diffusive mass transport or oxidation of the polymer

C. Liu, P. Peljo, X. Huang, W. Cheng, L. Wang et al., Single Organic Droplet Collision Voltammogram via Electron Transfer Coupled Ion Transfer, Analytical Chemistry, 2017.

, Simulations of single emulsion soft matter particle (femtolitre) impacts at a solid electrode which predict the particle angle upon impact as well as the iR dropin the oil phase

P. Peljo, E. Smirnov, and H. H. Girault, Heterogeneous versus homogeneous electron transfer reactions at liquid-liquid interfaces: The wrong question, Journal of Electroanalytical Chemistry, vol.779, pp.187-198, 2016.

, Interrogation of the ET mechanism of the Fc/Fe(CN6) 4-across a LLI showed that it occurs as a bulk process in the w phase with the observed current originating from the IT of the oxidised Fc + product. If a nanofilm is introduced

H. Hotta, S. Ichikawa, T. Sugihara, and T. Osakai, Clarification of the Mechanism of Interfacial Electron-Transfer Reaction between Ferrocene and Hexacyanoferrate(III) by Digital Simulation of Cyclic Voltammograms, The Journal of Physical Chemistry B, vol.107, pp.9717-9725, 2003.

P. Peljo, M. D. Scanlon, A. J. Olaya, L. Rivier, E. Smirnov et al., Redox Electrocatalysis of Floating Nanoparticles: Determining Electrocatalytic Properties without the Influence of Solid Supports, The Journal of Physical Chemistry Letters, vol.8, pp.3564-3575, 2017.

D. Momotenko, C. M. Pereira, and H. H. Girault, Differential capacitance of liquid/liquid interfaces of finite thicknesses: a finite element study, Physical Chemistry Chemical Physics, vol.14, pp.11268-11272, 2012.

G. C. Gschwend, E. Smirnov, P. Peljo, and H. Girault, Electrovariable Gold Nanoparticle Films at Liquid-Liquid Interfaces: from redox electrocatalysis to Marangoni-shutters, Faraday Discussions, 2016.

M. A. Deryabina, S. H. Hansen, and H. Jensen, Versatile Flow-Injection Amperometric Ion Detector Based on an Interface between Two Immiscible Electrolyte Solutions: Numerical and Experimental Characterization, Analytical Chemistry, vol.83, pp.7388-7393, 2011.

R. M. Wightman, Microvoltammetric electrodes, Analytical Chemistry, vol.53, pp.1125-1126, 1128.

G. Taylor and H. Girault, Ion transfer reactions across a liquid-liquid interface supported on a micropipette tip, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.208, pp.179-183, 1986.

J. Josserand, J. Morandini, H. J. Lee, R. Ferrigno, and H. H. Girault, Finite element simulation of ion transfer reactions at a single micro-liquid|liquid interface supported on a thin polymer film, Journal of Electroanalytical Chemistry, vol.468, pp.42-52, 1999.

N. Nishi, S. Imakura, and T. Kakiuchi, A digital simulation study of steady-state voltammograms for the ion transfer across the liquid-liquid interface formed at the orifice of a micropipette, Journal of Electroanalytical Chemistry, vol.621, pp.297-303, 2008.

P. J. Rodgers, S. Amemiya, Y. Wang, and M. V. Mirkin, Nanopipet Voltammetry of Common Ions across the Liquid?Liquid Interface. Theory and Limitations in Kinetic Analysis of Nanoelectrode Voltammograms, Analytical Chemistry, vol.82, pp.84-90, 2009.

E. Alvarez-de-eulate, J. Strutwolf, Y. Liu, O. Donnell, K. Arrigan et al., An Electrochemical Sensing Platform Based on Liquid-Liquid Microinterface Arrays Formed in Laser-Ablated Glass Membranes, Analytical Chemistry, vol.88, pp.2596-2604, 2016.

N. Nishi, H. Murakami, S. Imakura, and T. Kakiuchi, Facilitated transfer of alkali-metal cations by dibenzo-18-crown-6 across the electrochemically polarized interface between an aqueous solution and a hydrophobic room-temperature ionic liquid, Analytical Chemistry, vol.78, pp.5805-5812, 2006.

T. J. Stockmann, J. Noel, A. Abou-hassan, C. Combellas, and F. Kanoufi, Facilitated Lewis Acid Transfer by Phospholipids at a (water|CHCl3) Liquid|liquid Interface Towards Biomimetic and Energy Applications, The Journal of Physical Chemistry C, vol.120, pp.11977-11983, 2016.

T. J. Stockmann, H. Deng, P. Peljo, K. Kontturi, M. Opallo et al., Mechanism of oxygen reduction by metallocenes near liquid|liquid interfaces, Journal of Electroanalytical Chemistry, vol.729, pp.43-52, 2014.

H. Deng, T. J. Stockmann, P. Peljo, M. Opallo, and H. H. Girault, Electrochemical oxygen reduction at soft interfaces catalyzed by the transfer of hydrated lithium cations, Journal of Electroanalytical Chemistry, vol.731, pp.28-35, 2014.

L. Rivier, T. J. Stockmann, M. A. Méndez, M. D. Scanlon, P. Peljo et al., Decamethylruthenocene Hydride and Hydrogen Formation at Liquid|Liquid Interfaces, The Journal of Physical Chemistry C, vol.119, pp.25761-25769, 2015.

, Example of utilising digital simulations for understanding electrocatalytic reactions at liquidliquid interfaces

H. Deng, P. Peljo, T. J. Stockmann, L. Qiao, T. Vainikka et al., Surprising acidity of hydrated lithium cations in organic solvents, Chemical Communications, vol.50, pp.5554-5557, 2014.

W. Adamiak, J. Jedraszko, W. Nogala, M. Jönsson-niedziolka, S. Dongmo et al., A Simple Liquid-Liquid Biphasic System for Hydrogen Peroxide Generation, The Journal of Physical Chemistry C, vol.119, pp.20011-20015, 2015.

Y. Wang, K. Kececi, J. Velmurugan, and M. V. Mirkin, Electron transfer/ion transfer mode of scanning electrochemical microscopy (SECM): a new tool for imaging and kinetic studies, Chemical Science, vol.4, pp.3606-3616, 2013.

M. Zhou, Y. Yu, K. Hu, and M. V. Mirkin, Nanoelectrochemical Approach To Detecting Short-Lived Intermediates of Electrocatalytic Oxygen Reduction, Journal of the American Chemical Society, vol.137, pp.6517-6523, 2015.

*. Oleinick, A. Yu, Y. Svir, I. Mirkin, M. V. Amatore et al., Theory and Simulations for the Electron-Transfer/Ion-Transfer Mode of Scanning Electrochemical Microscopy in the Presence or Absence of Homogenous Kinetics, vol.4, pp.287-295, 2017.

, ET/IT mode of SECM is elucidated for the investigation of heterogeneous substrate reactions

H. Deng, P. Peljo, D. Momotenko, F. Cortés-salazar, T. J. Stockmann et al., Kinetic differentiation of bulk/interfacial oxygen reduction mechanisms at/near liquid/liquid interfaces using scanning electrochemical microscopy, Journal of Electroanalytical Chemistry, vol.732, pp.101-109, 2014.

M. Shen, R. Ishimatsu, J. Kim, and S. Amemiya, Quantitative Imaging of Ion Transport through Single Nanopores by High-Resolution Scanning Electrochemical Microscopy, Journal of the American Chemical Society, vol.134, pp.9856-9859, 2012.

S. Kuss, D. Trinh, and J. Mauzeroll, High-Speed Scanning Electrochemical Microscopy Method for Substrate Kinetic Determination: Application to Live Cell Imaging in Human Cancer, Analytical Chemistry, vol.87, pp.8102-8106, 2015.

J. D. Henderson, F. P. Filice, M. Li, and Z. Ding, Tracking Live-Cell Response to Hexavalent Chromium Toxicity by using Scanning Electrochemical Microscopy, vol.4, pp.856-863, 2017.

J. M. Ovejero, R. A. Fernández, and S. A. Dassie, Ion transfer across liquid|liquid interface under forced hydrodynamic conditions. I: Digital simulations, Journal of Electroanalytical Chemistry, vol.666, pp.42-51, 2012.

*. Vega-mercado, F. Ovejero, J. M. Zanotto, F. M. Serial, M. R. Velasco et al., Facilitated proton transfer across liquid | liquid interfaces under forced hydrodynamic conditions. Determination of partition coefficients of neutral weak bases, Journal of Electroanalytical Chemistry, vol.791, pp.64-74, 2017.

, Partitioning of neutral bases at a macro w|o interface under forced hydrodynamic conditions is modelled and correlated by multiple analytical techniques

E. E. Oseland, A. Rea, M. I. De-heer, J. D. Fowler, and P. R. Unwin, Interfacial kinetics in a model emulsion polymerisation system using microelectrochemical measurements at expanding droplets (MEMED) and time lapse microscopy, Journal of Colloid and Interface Science, vol.490, pp.703-709, 2017.

, Partition of an amine is investigated at an expanding oil-water droplet using a microelectrode and modelled with a moving boundary

M. A. Méndez, P. Peljo, M. D. Scanlon, H. Vrubel, and H. H. Girault, Photo-Ionic Cells: Two Solutions to Store Solar Energy and Generate Electricity on Demand, The Journal of Physical Chemistry C, vol.118, pp.16872-16883, 2014.

R. Bourdon, P. Peljo, M. A. Méndez, A. J. Olaya, D. Jonghe-risse et al., Chaotropic Agents Boosting the Performance of Photoionic Cells, The Journal of Physical Chemistry C, vol.119, pp.4728-4735, 2015.

, Example of simulations of mass transfer, light adsorption and photoreactions, and hydrodynamics for evaluation of the system performance