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Perceptually Controlled Reshaping
of Sound Histograms

Gaël Mahé∗ and Mériem Jaı̈dane

Abstract—Many audio processing algorithms have optimal
performance for specific signal statistical distributions that may
not be fulfilled for all signals. When the original signal is
available, we propose to add an inaudible noise so that the
distribution of the signal-plus-noise mixture is as close as possible
to a given target distribution. The proposed generic algorithm
(independent from the application) adds iteratively a low-power
white noise to a flat-spectrum version of the signal, until the
target distribution or the noise audibility is reached. The latter
is assessed through a frequency masking model. Two imple-
mentations of this sound reshaping are described, according to
the level of the targeted transformation and to the foreseen
application: Histogram Global Reshaping (HGR) to change the
global shape of the histogram and Histogram Local Reshaping
(HLR) to locally “chisel” the histogram, but keeping the global
shape unchanged. These two variants are illustrated by two
applications where the inaudibility of the noise generated by
the algorithm is required: “sparsification” for source separation,
and low-pass filtering of the histogram for application of the
quantization theorem, respectively. In both cases, the target
histogram is reached or almost reached and the transformation
is inaudible. The experiments show that the source separation
performs better with HGR and that the HLR allows a better
application of the quantization theorem.

Index Terms—sound histogram equalization, histogram global
reshaping, histogram local reshaping, noise audibility control,
sparsification, histogram low-pass filtering.

EDICS Category: AUD-SEN, AUD-AMCT, AUD-MSP

I. INTRODUCTION

H ISTOGRAM equalization (HE) is well-known in image

processing [1], and is mainly used to enhance the

contrast of an image. This kind of processing does not belong

to the traditional toolbox of sound processing, because the

“contrast” of a sound is not clearly defined and may not be

enhanced through simple HE.
However, some particular audio applications are improved

with a histogram equalization. A correction of non-linear

distortions based on HE was proposed in [2]. HE was also used

as a pre-processing step in automatic speech recognition, in

order to increase the robustness of the latter against noise (see

for example [3], [4]). In all these works, HE was conceived

as an enhancement processing, where the processed sound is

aimed at being perceptually different from the original one.
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In a different approach, the goal of HE is to enhance a

specific later processing step that needs particular statisti-

cal properties, while it is essential to keep the perceptual

properties of the signal unchanged. In [5], the audio signal

is “Gaussianized” in order to better identify the non-linear

system that will convey it. In [6]–[9], the time-frequency

coefficients of audio signals are “sparsified” - i.e. the amount

of zeros is increased [6], [7], [9] or the shape parameters of

their Generalized Gaussian distributions are reduced [8] - in

order to enhance source separation [7], [8] or audio-coding [6],

[9]. In [10], the histogram is low-pass filtered in order to fulfill

the conditions of the quantization theorem [11] and restore

the histogram of the signal from that of the sub-quantized

signal. In all these applications, the transformation must be

perceptually transparent.

While the algorithms operating on time-frequency distri-

butions [6]–[9] control the audibility of the transformation

through perceptual models, none of the algorithms operating

on time-domain samples [5], [10] provides a satisfactory

perceptual control of the transformation.

Hence, our goal is to propose a generic algorithm that

reshapes the histogram of the temporal samples of an audio

sequence into a target histogram, under an explicit constraint

of inaudibility of the additive noise generated by the transfor-

mation. The proposed algorithm is intended for any application

where the original signals to be processed are available and

should have a specific distribution for further optimal process-

ing. This distribution is for example Gaussian for non-linear

system identification [5], sparse for source separation [12],

band-limited for application of the quantization theorem [10],

adapted to the error minimization in the optimal quantization

[13].

Two levels of reshaping are targeted: changing the global

shape of the distribution, as in [5]–[9], or reshaping locally

the histogram, as in [10], assuming that the global shape is

satisfactory.

In Section II, we will present our algorithm and discuss its

features. Two versions of this algorithm will be described in

Sections III-A and III-B, according to the goal of the reshap-

ing: Histogram Global Reshaping (HGR) and Histogram Local

Reshaping (HLR), respectively. Finally, some experimental

results with speech and music will be presented in Section IV,

related to “sparsification” for a generic algorithm of blind

source separation in the time-domain, and low-pass filtering

of the histogram for application of the quantization theorem.
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II. PRINCIPLES OF THE ALGORITHM

A. Framework and goals

Let x be a discrete signal of finite length N , with inte-

ger values x(0) . . . x(N − 1). Considering histograms whose

classes are integer numbers, the histogram and the cumulative

histogram of x are defined by:

∀ k ∈ Z,

{

fx(k) = |{x(n) |x(n) = k}|

Fx(k) =
∑k

i=−∞ fx(i) = |{x(n) |x(n) ≤ k}|,
(1)

respectively, where |S| denotes the cardinality of a set S.

Let ftarget be the target histogram. Our goal is to find a

transformation of x into z (with integer values, too) so that:
{

fz ≃ ftarget (2)

w = z − x is inaudible with reference to x (3)

where w denotes the equivalent additive transformation noise.

We assess its inaudibility through a frequency masking con-

straint based on an frequency analysis on successive frames

of duration around 20 ms. Hence, reaching (2) and (3) corre-

sponds to solving:
{

min d(fz, ftarget) such that : (4)

γw(m, ν) < γmask(m, ν) ∀ framem, frequency ν (5)

where d denotes a given distance (dTV for total variation,

dKS for Kolmogorov-Smirnov...), γw(m, ν) denotes the power

spectral density of the transformation noise w in the mth frame,

and γmask(m, ν) the masking threshold of x in the mth frame,

in the frequency domain. In this paper, we will consider a

classical frequency-masking model [14], [15].

The proposed goal expressed by Eq. (4) and (5) exhibits

two challenging constraints:

• the histogram optimization has to be performed on the

whole signal, while the constraint is local and different

for each frame;

• the histogram is the histogram of the time samples, while

the constraints are expressed in the frequency domain.

B. State of the art

The principle of HE in [10] is to move the samples between

neighboring classes of the histogram, from classes in excess

to deficient classes as follows. Initially, z = x. For j varying

from the minimum to the maximum values of x,

• If fz(j)− ftarget(j) = M > 0, M samples of z of value

j are randomly selected. Each of those samples gets the

value j + 1, so that fz(j) = ftarget(j) and fz(j + 1) =
fz(j + 1) +M .

• If fz(j) − ftarget(j) = −M < 0, M samples of z of

value j+1 are randomly selected. Each of those samples

gets the value j. If fz(j + 1) < M , the missing samples

are randomly selected among those of value j + 2, and

so on, until fz(j) = ftarget(j).

At the end of this algorithm, the target histogram is exactly

reached, but the algorithm does not provide any control on

the audibility of the transformation. In the application that

[10] dealt with, i.e. low-pass filtering histograms, the lower

the cut-off frequency was, the higher the transformation noise

w was. It was only shown on some experimental examples

that w was inaudible for cut-off frequencies above a threshold

depending on the signal.

The first version of HE in [5], for “Gaussianization”, is

based on the same algorithm as in image processing. In the

time-domain the principle is to find for each sample x(n) the

sample z(n) so that the target cumulative distribution function

Ftarget in z(n) matches the empirical cumulative distribution

function in x(n), i.e.:

Ftarget

(

z(n)
)

= Fx

(

x(n)
)

(6)

Again, this basic algorithm makes the histogram fz match

exactly the target histogram ftarget, but does not control the

audibility of the transformation of x into z.

In order to make the transformation noise w inaudible, [5]

added a constraint to (6), leading to the following optimization

problem:

∀n ,

{

min |Ftarget

(

z(n)
)

− Fx

(

x(n)
)

| (7)

|w(n)| < wmax (8)

where wmax was set so that the variance of w estimated on

the whole sequence was equal to a target variance empirically

chosen to ensure inaudibility. The drawback of this method is

that it does not explicitly shape w according to a perceptual

model, as expressed by Eq. (5) for example, which may lead to

a sub-optimal trade-off between reaching the target histogram

and ensuring the inaudibility of the transformation.

A perceptual control of these algorithms would require to

fulfill the condition (5) on γw(m, ν). In the time domain, this

spectral shaping implies introducing a particular correlation

between successive values w(n). This is not possible in

Algorithm [10] (described at the beginning of this subsection)

where the samples are not processed sequentially. In Algo-

rithm [5], described above, Equations (7) and (8) constitute a

local optimization problem, sample by sample. Replacing (8)

by (5) would involve neighboring samples, which makes it

difficult to keep (7) local. The proposition that follows can

be seen as a generalization of [5] that takes into account the

interdependence between neighboring samples induced by the

frequency-domain constraint (5).

C. Proposed perceptually controlled histogram transformation

To circumvent the difficulty of taking into account the

dependencies between each sample w(n) and its neighbors, we

propose to formulate the problem in a domain of representation

where the transformation noise is white.

For this purpose, we propose a process based on the flatten-

ing/recoloring scheme 1 of Fig. 1, where T is a transformation

(possibly non-linear) controlled by the distance between fz
and ftarget, and assumed to be equivalent to the addition of

a white noise. Hence, the choice of H−1 allows to shape in

the frequency domain the transformation noise w = z − x
according to (5), while the specification (4) is obtained through

the control of T by d(fz, ftarget).

1Note that the flattening filter H actually flattens the masking threshold of
the signal, not the signal spectrum itself, as will be seen later (see Eq. (17))

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TASLP.2018.2836143

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

filter
H

whitening

H−1

coloring
filter

d(fz, ftarget)

x zTex ez

Fig. 1. Basic principle of the perceptually controlled sound histogram
transformation.

We propose to implement this general scheme through the

iterative algorithm illustrated by Fig. 2.

Initially,

• the original signal x is filtered by a frame-varying flat-

tening filter Hm controlled by a psychoacoustic model

of x:

ex = hm ∗ x, (9)

for each mth frame, where hm is the impulse response

of Hm and ∗ means discrete convolution. While the

psychoacoustic model is computed on 50%-overlapping

frames, the filter coefficients are defined on non-

overlapping frames. Hence, each processed frame m
corresponds to the central half of the samples of the mth

analysis frame.

• z = x and ez = ex.

Then, for each iteration i (one cycle) and each discrete time

n, we generate a random value δwe(i, n) ∼ N (0, σ2
i ). Adding

δwe(i, n) to ez(n), the nth sample of the flattened version of z,

can modify z(n) . . . z(n+L) (due to the coloring filter H−1
m ),

where L + 1 is the length of the impulse response of H−1
m ,

denoted by h−1
m , possibly infinite2. Denoting by ez′ and z′ the

modified versions of ez and z,

∀ k ∈ [0, L], z′(n+ k) = Round
(

L
∑

j=0

h−1
m (j)ez′(n+ k− j)

)

(10)

If this modification of z reduces d(fz, ftarget), then we add

δwe(i, n) to ez(n) and we therefore modify z(n) . . . z(n+L)
into z′(n) . . . z′(n + L). Otherwise we do not add δwe(i, n)
to ez(n) and z remains unchanged.

Fig. 3 presents an example of H−1
m , ez and z in the

frequency domain for some frame m of a piano signal, to

illustrate the flattening/coloring scheme.

This procedure is repeated several times on the whole

sequence. Hence, for q iterations,

z = x+Round(w) (11)

with

w = h−1
m ∗ we (12)

where

we(n) =

q
∑

i=1

δ(i, n)δwe(i, n) (13)

where δ(i, n) = 0 or 1 according to the decision of adding

δwe(i, n) or not. All δwe(i, n) are independent. Assuming

2We will consider only causal filters.

filter
Hm

flattening

H−1
m

coloring
filter

δwe
(i, n)

white

noise
generator

Gaussian

ex

acoustic
model

psycho-

d(fz, ftarget)

ez(n)

ez(n+ 1)

ez(n− 1)

ez(N − 1)

ez(0)

ez

Q

x

z

Initialization

z(n)

z(n− 1)

z(n+ 1)

z(0)

z(N − 1)

mth

frame

ON
only if
this will
reduce
d(fz, ftarget)

frame-based
update

Fig. 2. Perceptually controlled sound histogram reshaping. The initialization
part is performed once on the whole signal x. Then, after copying x to z and
ex to ez , the remaining part is performed with several iterations i (�) on the
whole signals ez and z. The “Q” box is a quantizer.
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Fig. 3. For a frame m of a piano signal sampled at 32 kHz, magnitude
frequency response |H−1

m (ν)| of the coloring filter and magnitude spectra (in
decibels) |Ez(ν)| and |Z(ν)| of signals ez and z. The spectra are computed
by Discrete Fourier Transform on 512 samples multiplied by a Hann window.
The filter H−1

m corresponds to the 256 central samples of this frame.

that the δ(i, n) are independent, δ(i, .) can be modeled by

a Bernoulli process of parameter pi, and then we is a white

noise of variance:

σ2
we

=
∑

(i1...iq)∈{0;1}q

Pr
(

Λ(n, i1 . . . iq)
)

q
∑

k=1

ikσ
2
k (14)

where Λ(n, i1 . . . iq) is defined in (40) (see Appendix A for
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proof). In the case where ∀ i, pi = p and σi = σ,

σ2
we

= pqσ2 (15)

Hence, the constraint γw(m, ν) < γmask(m, ν) (5) means:

|H−1
m (ν)|2σ2

we
< γmask(m, ν) (16)

which can be implemented as:
{

|H−1
m (ν)|2 = γmask(m, ν) (17)

σwe
< 1 (18)

where the satisfaction of the constraint (18) can be controlled

through the choice of q and (σi)1≤i≤q .

Concerning the δ independence assumption, remind that

δ(i, n) depends on the effect on d(fz , ftarget) of the modi-

fication of z(n) . . . z(n + L) caused by δwe(i, n). Since the

δwe(i, n) are independent and the dependency of successive

samples of z has only an indirect effect on the dependency

of d(fz, ftarget) modifications - particularly if L is high -

it seems reasonable to assume the Bernoullicity of δ(i, .).
The latter will be checked in the experimental part (IV) and

in Appendix C. This is however not a necessary condition

to get we stationary and white. Referring to Eq. (13), since

each δwe(i, .) is stationary, we is stationary if each δ(i, .) is

stationary. Concerning the whiteness, let:

w(i)
e (n) = δ(i, n)δwe(i, n) (19)

The auto-correlation of w
(i)
e is defined by:

Γ
w

(i)
e
(k) (20)

= E[δ(i, n)δwe(i, n)δ(i, n+ k)δwe(i, n+ k)]

= Pr
(

δ(i, n)δ(i, n+ k) = 1
)

×E[δwe(i, n)δwe(i, n+ k) | δ(i, n)δ(i, n+ k) = 1]

Hence, we is white if for each i and for k 6= 0:

E[δwe(i, n) | δ(i, n) = 1] = 0 (21)

E[δwe(i, n)δwe(i, n+ k) | δ(i, n)δ(i, n+ k) = 1] = 0 (22)

The latter properties (21,22) will be checked in the experi-

mental part (IV) and in Appendix C.

The algorithm is repeated until fz is close enough to ftarget
or the estimated σwe

(σ̂we
= 1

N

∑N−1
n=0 we(n)

2) reaches 1.

The detailed algorithm is presented in Fig. 4. Running several

iterations with small values of σi instead of few iterations

with σi ≃ 1 allows to control a slow increase of σwe
until 1,

avoiding reaching 1 if not necessary. Moreover, a modification

of a sample ez(n) that was not possible at an iteration may

become possible at the next iteration, since the modifications

of the other samples that occurred meanwhile changed the

histogram. Hence, small variations distributed among all the

samples can achieve the same histogram reshaping as larger

variations concentrated on fewer samples, with a lower vari-

ance of the transformation noise we.

To decide if a sample modification will make the his-

togram fz closer to the target histogram ftarget, we use

a distance D (see Fig. 4) that can be different from the

distance d. In particular, a distance d based on the L∞-norm

is unlikely modified by a local modification of fz, although

z ← x, fz ← fx, Fz ← Fx and ez ← ex
Fix ε, ε′, MAX IT , ∆min

d , i = 0, (σℓ)1≤ℓ≤MAX IT < 1
repeat

i← i+ 1
for n = 0→ N − 1 do

z′ ← z, fz′ ← fz , Fz′ ← Fz and ez′ ← ez
Generate δwe ∼ N (0, σ2

i )
ez′(n)← ez′(n) + δwe

∆D ← 0
for k = 0→ L do

z′(n+ k)← Round
(
∑L

j=0
h−1
m (j)ez′(n+ k − j)

)

if z′(n+ k) 6= z(n+ k) then
Update fz′
Compute ∆D = D(fz′ , ftarget)−D(fz, ftarget)

end if
end for
if ∆D ≤ 0 then

z ← z′, fz ← fz′ , Fz ← Fz′ and ez ← ez′
we(n)← ez(n) − ex(n)

end if
end for

until d(fz, ftarget) < ε ∨ 1

N

∑N−1

n=0
we(n)

2 > 1 − ε′ ∨ i >
MAX IT ∨ ∆D < ∆min

d

central
block

Fig. 4. Perceptually controlled histogram transformation. D is a distance that
can be different from d. The central block depends on the application case:
HGR (see Fig. 6) or HLR (see Fig 7).

the latter can contribute to make fz closer to ftarget and thus

reduce d(fz, ftarget) in the long term. The distance D will be

specified in Section III.

Each step (i, n) of the algorithm causes either nothing, or

simultaneously a decrease of D(fz, ftarget) and an increase

of σ̂we
. If the convergence of D is equivalent to that of d,

this makes the algorithm converge as long as it is possible

to modify one sample ez(n) so that D(fz , ftarget) decreases.

The stop conditions of the loop however make the algorithm

stop if the decrease of d during one iteration on the whole

signal is too small.

The coefficients of the filter Hm are updated at the same

rate as the masking threshold of the signal x. Since the amount

of updates of z(n) . . . z(n + L) and fz for each n depends

on L, H−1
m should preferably be an FIR filter. The shorter

its impulse response, the rougher the approximation of the

masking threshold by |H−1
m (ν)|2 (Eq. (17)). Consequently, a

trade-off must be done between complexity and perceptual

accuracy. The global complexity of the algorithm will we

calculated in Section III.

Within this general frame, one must specify:

• the psychoacoustic model and its approximation through

the frequency response |H−1
m (ν)|, which condition the

perceptual control and the complexity of the algorithm;

• the number of iterations q and the standard deviations

(σi)1≤i≤q , which control the convergence;

• the distances d and D, which define how the similarity

between histograms is measured.

The latter will be specified in Section III, while the former

two will be set in the experimental section (IV).
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D. Perceptual issues

The coefficients of H−1
m are updated every frame, in order to

match the psychoacoustic model. The phase of this filter may

change, which may cause discontinuities in the output signal at

some of the frame transitions. Hence, the transformation noise

w may occasionally have audible discontinuities (clicks) that

are not taken into account by the psychoacoustic model, since

they originate from the model update itself.

To avoid this, at the end of each iteration of the algorithm,

we (i) extract the transformation noise w = z − x; (ii) low-

pass-filter its discontinuities that occur at frame transitions and

that are greater than a locally adapted threshold; (iii) add this

smoothed version of w to the original signal x, thus yielding a

new z. The length of the impulse response of the low-pass filter

must be short enough to ensure a limited impact on Pz . The

details of the smoothing process are specified in Appendix B.

Additionally, as shown in [16], fulfilling the inaudibility

constraint (5), where γmask is provided by a frequency-

masking model, ensures the inaudibility of the transformation

noise, but only in average for a given set of audio signals.

Actually, the performance of the model depend on the signal,

so that γmask should be multiplied by an attenuation factor

depending on the audio content.

Consequently, for each specific audio signal, all filters Hm

are multiplied by the same attenuation factor λ chosen in such

a way that a white Gaussian noise of variance 1 filtered by the

successive λH−1
m and added to the audio signal is inaudible.

III. IMPLEMENTATIONS OF THE HISTOGRAM RESHAPING

ALGORITHM

Two different goals may be assigned to this general algo-

rithm: changing the global shape of the histogram (as in [5]

and [8]) or, assuming the global shape is satisfying, matching

accurately a target histogram (as in [10]). Fig. 5 illustrates

these two transformations: in the first case (Fig. 5a), we focus

on the global shape of the histogram, while in the second

case (Fig. 5b), the histogram has to be locally “chiseled”,

keeping the global shape unchanged. We call these two tasks

Histogram Global Reshaping (HGR) and Histogram Local

Reshaping (HLR), respectively. The behavior of the previously

described algorithm will be oriented through the choice of

the distance used to measure the dissimilarity between two

histograms (respectively the Kolmogorov-Smirnov distance

and the total variation distance, as will be detailed later), in

two specific implementations.

A. Histogram Global Reshaping (HGR)

To change the global shape of the histogram, each step of the

algorithm must reduce the difference between Fz and Ftarget,

respectively the cumulative histogram of z and the target

cumulative histogram. The interest of using the cumulative

histogram is the underlying integration of the histogram, which

smooths the local differences between fz and ftarget. Hence,

sample modifications directed by Fz − Ftarget help focusing

on the global shape of the histogram.

For this purpose, the convergence will be assessed through

dTV = dTVa

dKS = dKS
a

HGR

(a)

0-100 100-150 -50 50 150
0

200

100

50

150

250 fx(k)

k
0-100 100-150 -50 50 150

0

200

100

50

150

250
fz(k)

k

dTV = dTVa /2.2

dKS = dKS
a /3.2

(b)

dTV = dTVa /5.9

dKS = dKS
a /15.2

HLR
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Fig. 5. Examples of Histogram Global Reshaping (HGR, a) and Histogram
Local Reshaping (HLR, b). The total variation distance (dTV) is more
sensitive to local differences than the Kolmogorov-Smirnov distance (dKS).

the Kolmogorov-Smirnov distance3 and we define the distance

D by:

D
(

fz, ftarget
)

=
∑

Z

(

Fz − Ftarget

)2
. (23)

Since D is sensitive to any sample modification, it is

used to decide to add (or not) δwe
(i, n) to ez(n), while the

Kolmogorov-Smirnov distance, sensitive to global modifica-

tions (L∞ norm), is used only at the end of each cycle of the

algorithm.

For each iteration i and each discrete time n, adding

δwe(i, n) ∼ N (0, σ2) to ez(n) modifies z(n) . . . z(n + L)
into z′(n) . . . z′(n+L). Referring to (10), each z(n+k) with

0 ≤ k ≤ L is modified by approximately h−1(k)δwe(i, n). If

Fz(z(n+ k)− 1) < Ftarget(z(n+ k)− 1)
(

resp. Fz(z(n+ k)− 1) > Ftarget(z(n+ k)− 1)
)

a negative (resp. positive) value h−1(k)δwe(i, n) tends to

make Fz closer to Ftarget.

Let us define the integer interval Ik:

Ik =

{

[z(n+ k), z′(n+ k)[ if z(n+ k) ≤ z′(n+ k)
[z′(n+ k), z(n+ k)[ if z′(n+ k) < z(n+ k)

(24)

For each k from 0 to L, D(fz , ftarget) varies by:

∆kD =
∑

Ik

(

F
(k)
z′ − Ftarget

)2
−
(

F
(k−1)
z′ − Ftarget

)2
, (25)

3Let f and g be two histograms and F and G the respective corresponding
cumulative histograms, as defined in Section II. The Kolmogorov-Smirnov
distance is defined by: dKS(f, g) =

1

N
supk∈Z |F (k)−G(k)|.
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fz′(z
′(n+ k))← fz′(z

′(n+ k)) + 1
fz′(z(n+ k))← fz′(z(n+ k))− 1
if z′(n+ k) < z(n+ k) then

Ik = [z′(n+ k), z(n+ k)[
∆kD

− =
∑

Ik
|Fz′ − Ftarget|

2

In Ik, Fz′ ← Fz′ + 1
else

Ik = [z(n+ k), z′(n+ k)[
∆kD

− =
∑

Ik
|Fz′ − Ftarget|

2

In Ik, Fz′ ← Fz′ − 1
end if
∆D ← ∆D +

∑

Ik
|Fz′ − Ftarget|

2 −∆kD
−

Fig. 6. Central block of perceptually controlled histogram transformation (see
Fig 4) for Histogram Global Reshaping.

where F
(k)
z′ is the new cumulative histogram after modifying

z(n+ k) (with F
(−1)
z′ = Fz).

If the total variation of D(fz , ftarget) resulting from the

L+ 1 modifications of z is negative, i.e.

∆D =

L
∑

k=0

∆kD ≤ 0, (26)

we carry out these modifications of ez(n) and z(n) . . . z(n+
k), otherwise we cancel them (see Fig. 4 with d = dKS and

central block detailed in Fig. 6).

Note that a convergence according to D(fz, ftarget) (L2

norm) means a convergence according to dKS(fz, ftarget) (L∞

norm)). Hence, reducing D(fz, ftarget) contributes, in the long

term, to a decrease of dKS(fz , ftarget).

B. Histogram Local Reshaping (HLR)

For a fine adjustment of a histogram having the same global

shape as ftarget, samples of z have to move locally from

values in excess in the histogram to deficient values. We assess

the convergence through the total variation distance4 (dTV),

which is sensitive to local differences between histograms.

For each i, n, adding δwe(i, n) ∼ N (0, σ2) to ez(n) mod-

ifies z(n) . . . z(n+L) into z′(n) . . . z′(n+L). Each of these

L+ 1 modifications causes a variation of dTV(fz, ftarget) in

{0;± 1
N
}, according to the relative values of ftarget(z

′(n+k))
and fz(z

′(n+ k)) on the one hand, of ftarget(z(n+ k)) and

fz(z(n+k)) on the other (see Table I). If the global variation

of dTV resulting from the L+1 modifications of z is negative

then we carry out these modifications, otherwise we cancel

them.

The detailed algorithm is presented in Fig. 4 with D =
d = dTV and central block detailed in Fig. 7. This algorithm

ensures the decrease of dTV(fz, ftarget).

C. Computational complexity

From Fig. 4, the mean algorithmic complexity C af-

ter the initialization phase, measured by the number of

4Let f and g be two histograms as defined in Section II. The total variation
distance is defined by: dTV(f, g) = 1

2N

∑

k∈Z
|f(k)− g(k)|.

TABLE I
POSSIBLE VARIATIONS OF dTV(fz , ftarget). nk = n+ k

ftarget(z
′(nk)) ftarget(z

′(nk))
> fz(z

′(nk)) ≤ fz(z
′(nk))

ftarget(z(nk)) ≥ fz(z(nk)) 0 +1/N
ftarget(z(nk)) < fz(z(nk)) −1/N 0

if fz′(z(n+ k)) > ftarget(z(n+ k)) then
∆D ← ∆D − 1

2N

else
∆D ← ∆D + 1

2N

end if
if fz′(z

′(n+ k)) < ftarget(z
′(n+ k)) then

∆D ← ∆D − 1

2N

else
∆D ← ∆D + 1

2N

end if
fz′(z

′(n+ k))← fz′(z
′(n+ k)) + 1

fz′(z(n+ k))← fz′(z(n+ k))− 1

Fig. 7. Central block of perceptually controlled histogram transformation (see
Fig 4) for Histogram Local Reshaping.

multiplications-accumulations (MAC), is approximated as fol-

lows:

C ≃ NitN(L+ 1)

(

L+ 1 + Pr
(

z′(n) 6= z(n)
)

C′

)

, (27)

where Nit and C′ denote the number of iterations and the

mean complexity of the central block, respectively. Referring

to Fig. 6 and 7,

C′ = 3E[|z′(n)− z(n)||z′(n) 6= z(n)] + 4 for HGR (28)

2 ≤ C′ ≤ 4 for HLR (29)

We empirically found the expectation in Eq. 28 equal to 1.5

to 3, and Pr
(

z′(n) 6= z(n)
)

≃ 0.5, so that Eq. 27 becomes:

C ≃ NitN(L+ 1)(L+ κ), (30)

with 2 ≤ κ ≤ 7.5. Although the complexity is linear in N , the

multiplicative factor is quadratic in L, so that flattening filters

with long impulse responses can slow down the execution.

IV. EXPERIMENTAL RESULTS

The algorithm (with its two variants HGR and HLR) was

tested on music (instruments and singing voice) and on speech.

The signals have integer values in [−215; 215 − 1].
In the following experiments, the filters H−1

m approximating

the masking threshold (17) are FIR filters of orders L. The

coefficients of H−1
m are those of the auto-regressive model

of the inverse of the masking threshold. Indeed, considering

1/γmask(m, ν) as a power spectral density, one can compute

the corresponding auto-correlation coefficients by inverse DFT.

Then we derive from these coefficients an auto-regressive

model of order L corresponding to a transfer function of

form σm/(1 +
∑L

i=1 a
(m)
i z−i) (see [17], Chap. 11). The

corresponding frequency response is a smooth version of

1/γmask(m, ν). Hence, the frequency response of H−1
m (z) =

(1+
∑L

i=1 a
(m)
i z−i)/σm approximates the masking threshold.
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The choice of L depends on the sampling frequency and the

shape of the masking threshold. In Subsection IV-A, where

music signals sampled at 32kHz are processed, we chose

L = 50. In Subsection IV-B, where narrow-band speech is

processed, the masking threshold is smoother than for music

at higher sampling frequency, so that L = 10 is sufficient

(reminding that increasing L increases the complexity).

To set the attenuation factor λ applied to all H−1
m , mentioned

in Subsection II-D, the masking was assessed through:

• the Objective Difference Grade (ODG) for music, pre-

dicted by PQevalAudio5 according to PEAQ [18], which

provides values between -4 and 0. A value greater than

-1 indicates an inaudible distortion. We fixed λ for the

ODG to be −0.5± 0.1.

• the Mean Opinion Score (MOS) for speech, estimated by

PESQ [19], which provides scores between -0.5 and 4.5.

An estimated MOS greater than 4 indicates an inaudible

distortion. We fixed λ for the MOS to be 4.1± 0.1.

We present one application for each algorithm. Video and

audio demonstrations, as well as the Scilab codes of the algo-

rithms, are available at http://up5.fr/SoundHistograms

A. Histogram Global Reshaping for “Sparsification”

We ran the HGR algorithm on various musical tracks of the

QUASI database [20], [21] sampled at 32 kHz. The masking

threshold was updated every 8ms according to the MPEG-

1 first model [15], computed on 50%-overlapping frames of

length 512 (16ms), apodized by a Hann window. We set for

σi a constant value of 0.25.

Here, we present the results for an 11s sequence of bass and

a 10 s sequence of piano. These sequences have generalized

Gaussian (GG) distributions6 of shape parameters 1.6 and 2.1,

respectively (estimation by the moment method [22]). We

propose to divide their shape parameters by 2 by running

the Histogram Global Reshaping algorithm (Fig. 6) with

target histograms ftarget matching GG distributions of shape

parameters 0.8 and 1.05, respectively.

Fig. 8 presents the convergence of the algorithm in terms of

Kolmogorov-Smirnov distance, in parallel with the estimation

of σwe
, for both the bass sequence (8a) and the piano sequence

(8b). For the bass, the algorithm reaches the bound of the

inaudibility constraint (σwe
< 1) just at the convergence point,

while in the case of the piano, the bound of the inaudibility

constraint is reached several iterations before reaching the tar-

get distribution. In each iteration, each second of signal needs

90 to 120 s to be processed, with our Scilab implementation

on a standard computer.

The assumption that each δ(i, .) can be modeled by a

5http://www-mmsp.ece.mcgill.ca/Documents/Software/

Packages/AFsp/PQevalAudio.html

Note that PQevalAudio is calibrated to signals sampled at 48 kHz, while our
signals are sampled at 32 kHz. Consequently, we up-sampled them to 48 kHz
before measurement

6The probability density function of a generalized Gaussian distribution is
of the form: f(x) = β/

(

2αΓ(1/β)
)

exp
(

− (|x − µ|/α)β
)

, where µ, α,
and β denote the mean, scale and shape parameters, respectively. β = 2
for a Gaussian distribution. Γ denotes the gamma function, defined for each
z ∈ C \ Z by: Γ(z) =

∫∞

0
tz−1e−tdt
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Fig. 8. Histogram Global Reshaping for an 11s bass sequence (a) and a
10s piano sequence (b). Initial shape parameters 1.6 and 2.1 respectively.
Target shape parameters 0.8 and 1.05 respectively. Evolution of the estimated
standard deviation of we (σ̂we ) and of the Kolmogorov-Smirnov distance
to the target distribution (dKS(fz , ftarget)). The dotted lines correspond to
the prolongation of the algorithm beyond its normal stop-point (when σ̂we

reaches 1).

Bernoulli process was validated by statistical tests detailed in

Appendix C.

Fig. 9 compares the cumulative histograms Fx, Fz and

Ftarget at the stop-point of the algorithm (end of the 10th

iteration) for bass and piano (9a and 9b, respectively). For

the bass (Fig. 9a), the global shape of fz matches that of

ftarget, which leads to very close cumulative histograms. The

histogram fz has a final estimated shape parameter of 1.27.

As indicated by Fig. 9b, the final histogram for piano is

intermediate between the original one and the target one. The

transformed signal z has an estimated shape parameter of 1.7.

The inaudibility of the transformation was assessed through

the Objective Difference Grade (ODG), predicted by PQe-

valAudio. We obtained an ODG of -0.9 for the bass, and -1.0

for the piano (inaudible distortions).

To compare the performance of this algorithm to that of [5],

we plotted dKS(fz, ftarget) as a function of the ODG for

both algorithms, for the previous bass and piano signals. As

indicated by Fig 10, the HGR algorithm reaches a much better

trade-off between audio quality and histogram reshaping.

A possible application of this sparsification is source separa-

tion in time domain, since blind source separation algorithms

(BSS) are known to reach better performance with sparse

7Since the final Kolmogorov-Smirnov distance, 8 × 10−3, is very weak,
the shape parameter estimation method may not be accurate
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Fig. 9. Target cumulative histogram Ftarget, difference between the original
cumulative histogram Fx and Ftarget, difference between the cumulative
histogram Fz of the “sparsified” signal z and Ftarget, for an 11s bass
sequence (a) and a 10s piano sequence (b).
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Fig. 10. Kolmogorov-Smirnov distance to the target histogram,
dKS(fz , ftarget), as a function of the ODG, for the bass and piano
signals, both processed by the algorithm [5] and by the HGR algorithm.
For [5], each point corresponds to a given value of wmax. For HGR, each
point corresponds to the result of an iteration.

signals — i.e. with lower shape parameters in the case of

generalized Gaussian distribution — and to behave badly if

the distribution is close to a Gaussian (see for example [12],

[23]). Our proposal is applicable to contexts where the original

sources are available before mixing, like informed source

separation (ISS8) [24].

To illustrate this proposal, we compared the performance

of a classic BSS algorithm on stereo mixtures of pairs of

instruments (among singing voice, piano, acoustic guitar,

electric guitar, and keyboards), sparsified according to our

algorithm, to the performance obtained without sparsification.

The experiment was run as illustrated by Fig. 11. We sparsified

each source signal according to the HGR algorithm, with a

target shape parameter equal to half of that of the original

distribution of the signal. We chose as mixture matrix:

A =

(

1/3 2/3
2/3 1/3

)

(31)

We used the Scilab implementation9 of the FastICA algorithm

[25] to separate the sources.

Since the Independent Component Analysis (ICA) of two

mixtures of two sources is the easiest task of BSS, the

sources are often well separated without any pre-processing.

Consequently we focused the experiment on mixtures badly

separated by FastICA. We ran this experiment on four duos

from the QUASI database. For each of them, we evaluated:

• the sparsity of the original and sparsified signals, through

the shape parameter β of the distribution;

• the quality of the sparsified mix, compared to the original

one, through the ODG (predicted by PQevalAudio);

• the performance of the source separation, through the

Source to Distortion Ratio (SDR), the Source to Interfer-

ence Ratio (SIR) and the Source to Artifact Ratio (SAR)

as defined by [26].

The results are summarized in Table II and Fig 1210 and can

be heard on the aforementioned web page. For mixtures A, B

and D, the sparsification clearly enhances the performance of

source separation. Note that the SIR and SDR increase even

if the shape parameter β is not much reduced (see Mixtures C

and D). For mixtures that are already fairly separated without

sparsification, like Mixture C, the sparsification leads to a

lower enhancement of separation. In Experiment B, since the

shape parameter of the guitar signal is around 3, sparsifying

this signal could make its distribution close to a Gaussian one.

Consequently, we let it unsparsified.

The ODG of the mixes (Table II) and the SxRs (Fig. 12)

measured separately the perceptual impairments of the mixes

due to sparsification and the separation enhancement due to

sparsification, respectively. To measure the global gain due

to sparsification, encompassing both effects, we computed the

perceptual scores provided by the PEASS toolkit [27], using

the original signals (x1 and x2 in Fig. 11) as reference signals

for both couples of separated signals: (x̂1, x̂2) and (ẑ1, ẑ2).
PEASS provides four perceptual scores (PS): overall (OPS),

8The typical application case of ISS is the following: musical sources are
recorded separately in a studio on different tracks; the tracks are watermarked
before mixing; then, any final user can separate the sources from the mixture
by using the information conveyed by the watermark, assuming the latter has
been specifically designed for this purpose.

9http://research.ics.aalto.fi/ica/fastica/
10In some cases, the separation performed by FastICA is variable. Hence,

we ran the separation algorithm 20 times for each mixture and displayed the
means and the confidence intervals (if applicable) of the SxR values.
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TABLE II
RESULTS OF SPARSIFICATION OF THE MIXTURES.

Mixture instruments shape parameter ODG mix

A
voice 1.8 → 1.6

-0.8
piano 2.1 → 1.7

B
guitar 3

-0.4
keyboards 1.8 → 1.3

C
voice 1 1.1 → 1.0

-0.6
voice 2 1.0 → 0.9

D
guitar solo 1.5 → 1.5

-0.8
guitar acoustic 1.4 → 1.1

A

A

BSS

BSS

sp
ar

si
fi

ca
ti

o
n

x1

x2

z1

z2

x̂1

x̂2

ẑ1

ẑ2

Fig. 11. Blind source separation (BSS) of a stereo mixture (mixture matrix
A), without (top) and with (bottom) sparsification of the source signals.

Mixture

S
xR

 (
dB

)

Fig. 12. Performance of source separation with and without sparsification for
4 mixtures A, B, C, and D. Vertical bars represent confidence intervals (when
applicable). In Mixture B, the guitar signal was not sparsified. SIR = Source
to Interference Ratio; SDR = Source to Distortion Ratio; SAR = Source to
Artifact Ratio.

target-related (TPS), interference-related (IPS), and artifacts-

related (APS). These scores are summarized in Fig. 13 for the

four considered mixes. The same observations as for Fig. 12

can be made. Hence, when taking as reference the unsparsified

signals, the sparsification-mixing-unmixing process leads to

better separation quality than mixing-unmixing.

B. Low-pass filtering of the histogram

We will illustrate the Histogram Local Reshaping algorithm

in the case of low-pass filtering of the histogram for the

application of the quantization theorem.

Let x be a discrete-valued signal with (discrete) probability

density function (PDF) fx. The characteristic function of x

Mixture

xP
S

Fig. 13. Global perceptual impact of sparsification on source separation for
4 mixtures A, B, C, and D. OPS = Overall Perceptual Score, TPS = Target-
related Perceptual Score, IPS = Interference-related Perceptual Score, APS =
Artifacts-related Perceptual Score. Vertical bars represent confidence intervals
(when applicable).

is defined by DFT−1(fx). According to the sub-quantization

theorem [10], adapted from the quantization theorem [11] to

discrete-valued signals, if the characteristic function of x is

equal to zero for frequencies |ν| > 1
2K in [− 1

2 ;
1
2 ], then the

probability density function of x can be derived from that of

the signal xQ resulting from the sub-quantization of x with a

factor K .

The original PDF is recovered through filtering the PDF of

xQ by a filter of frequency response G(ν):

G(ν) =

{ 1
R(ν) if |ν| < 1

2K

0 otherwise
(32)

where:

R(ν) =











K if ν ∈ Z
sin(πKν)
sin(πν) exp(jπν) ν /∈ Z andK even

sin(πKν)
sin(πν) ν /∈ Z andK odd

(33)

The same results hold for histogram instead of PDF.

Hence, to fulfill the condition of the sub-quantization

theorem, the histogram must be low-passed, with a cut-

off frequency 1/2K . Since this may not change the global

shape of the histogram, the HLR algorithm is appropriate

for this purpose. The HLR algorithm was run on speech

signals from the TIMIT database [28], sampled at 8kHz. The

masking threshold was approximated by the power spectral

density of the signal, minus a given offset [29], computed

on 50%-overlapping frames of length 256 (32ms), apodized

by a Hamming window. We set K = 16, so that the target

histogram is the result of the low-pass filtering of fx with a

normalized cut-off frequency 1/32.

We present the results for a 3s sentence pronounced by a

female and a male speakers. Fig. 14 illustrates the conver-

gence of the algorithm in terms of total variation distance, in
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Fig. 14. Histogram Local Reshaping for a 3s speech sequence from a female
(a) and a male (b) speakers, with target histogram defined by low-pass filtering
of the original histogram, with cut-off frequency 1/32. Evolution of the Total
Variation distance dTV(fz , ftarget) and of the estimated variance of we

(σ̂we ). According to the constraint (18), the algorithm stops when σ̂we

reaches 1.

parallel with the estimation of σwe
, for constant σi = 0.25,

MAX IT = ∞ and ∆min
d = 0 (see Fig. 7). In each iteration,

each second of signal needs 3s to be processed, with our

Scilab implementation on a standard computer. After a strong

decrease during the first iteration, the distance to the target his-

togram decreases more and more slowly, while the estimated

σwe
reaches 1. The irregular evolution of dTV(fz, ftarget) for

a large number of iterations is caused by the discontinuities

smoothing procedure at the end of each iteration, which effect

on dTV may not be negligible anymore compared to the

low decrease of dTV during the iteration. If we stop the

algorithm after 100 iterations, the histogram is really low-

passed, as illustrated by Fig. 15 for the female speaker (a

similar result was obtained for the male speaker), whereas

z remains perceptually identical to x. The Mean Opinion

Score (MOS) of z compared to x is estimated by PESQ [19].

The estimated MOS is 4.4 for the female speaker (4.3 for

the male speaker), which indicates an inaudible distortion.

Comparatively, low-pass filtering the histogram as in [10] leads

to a signal y of which histogram fy is equal to ftarget, but

with an estimated MOS of 3.9 for the female speaker and 3.7

for the male speaker (slightly audible distortion).

Note that δ(i, .) here is too far from a Bernoulli process,

but is stationary, and the conditions (21,22) for whiteness of

we are fulfilled for most iterations (see Appendix C).

We sub-quantized with a factor K = 16 the original signal
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|DFT−1(fz)|

|DFT−1(fx)|

|DFT−1(ftarget)|

Fig. 15. After 100 iterations of the HLR algorithm, characteristic functions
of the original signal (|DFT−1(fx)|) and of the signal with low-pass-filtered
histogram (|DFT−1(fz)|), compared to the target characteristic function
|DFT−1(ftarget)|.

TABLE III
PDF RECOVERY ERROR, DEFINED AS THE TOTAL VARIATION DISTANCE

BETWEEN THE ORIGINAL AND THE RECOVERED PDF.

Recovery error
Signal Female speaker Male speaker

Original x 1.3× 10−1 1.3× 10−1

HLR-modified z 1.9× 10−2 2.7× 10−2

Transformed as in [10] y 2.4× 10−3 2.2× 10−3

x and its transformed versions z and y into xQ, zQ, and yQ,

respectively. Then we retrieved each original PDF from that

of the quantized signal, using the filter G (32). The results are

summarized in Table III.

The proposed algorithm leads to a recovery error which

is much better than without low-pass filtering the histogram,

higher than that of [10], but with a guaranteed inaudible

transformation noise. Hence, HLR is an efficient approach

for inaudibly lowpass-filtering sound histograms, which makes

possible to at last take advantage from the powerful Widrow

quantization theorem for audio signals.

V. CONCLUSION

We have proposed a sound histogram reshaping method

that makes any histogram closer to a target histogram, while

controlling the inaudibility of the transformation. The principle

is to add iteratively a low-power white noise to a flat-spectrum

version of the signal, until the target distribution or the noise

audibility is reached. This scheme was applied through two

variants, Histogram Global Reshaping (to change the global

shape of the histogram) and Histogram Local Reshaping

(to locally “chisel” the histogram, keeping its global shape

unchanged).

This algorithm for perceptually controlled reshaping of

sound histograms opens new perspectives in various audio pro-

cessing applications where the original signal is available and

its distribution preferably fulfills specific requirements: band-

limited characteristic function for histogram restoration [10];

Gaussianity for non-linear audio system identification [5];
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sparsity for informed audio source separation [12]; specific

distribution for optimal audio quantization [13].
Future works will focus on reducing the complexity factor

due to the length of the coloring filter impulse response.

The solution could be based on a perception-based filter-bank

(auditory filters mimicking the auditory system [30], [31]) and

white noise addition in each frequency channel, which would

avoid the memory effect responsible for complexity.

Audio signals have a malleability bounded by the properties

of human audition, which was extensively exploited by audio-

coding [32], [33] and watermarking [34]. This perceptually

controlled reshaping of sounds histogram is another way of

exploring this malleability.

APPENDIX A

COMPUTATION OF σ2
we

Let

we(n) =

q
∑

i=1

δ(i, n)δwe(i, n), (34)

where ∀ i,
{

δwe(i, n) ∼ N (0, σ2
i ) and all δwe(i, n) are independent,

δ(i, .) is a Bernoulli process of parameterpi.

A. Case ∀ i, pi = p and σi = σ

The probability density function of we(n) is given by:

f
(

we(n)
)

=

q
∑

k=1

Pr

( q
∑

i=1

δ(i, n) = k

)

f

(

we(n)
∣

∣

∣

q
∑

i=1

δ(i, n) = k

)

(35)

where
(

we(n)
∣

∣

∣

q
∑

i=1

δ(i, n) = k

)

∼ N (0, kσ2) (36)

Hence, we(n) has zero mean and variance:

σ2
we

=

q
∑

k=1

Pr

( q
∑

i=1

δ(i, n) = k

)

kσ2 (37)

= σ2E

[ q
∑

i=1

δ(i, n)

]

(38)

= pqσ2 (39)

B. General case

For (i1 . . . iq) ∈ {0; 1}q, let us define the event:

Λ(n, i1 . . . iq) =

q
⋂

k=1

{δ(k, n) = ik} (40)

The probability density function of we(n) is given by:

f
(

we(n)
)

=
∑

(i1...iq)∈{0;1}q

Pr
(

Λ(n, i1 . . . iq)
)

f
(

we(n)|Λ(n, i1 . . . iq)
)

(41)

x

wz +

-

+ -

dw wcont

wdisc

w̃

z̃

1− z−1 1
1−z−1

Fig. 16. Smoothing the discontinuities of the transformation noise w.

where

(

we(n)
∣

∣Λ(n, i1 . . . iq)
)

∼ N

(

0,

q
∑

k=1

ikσ
2
k

)

(42)

Hence, we(n) has zero mean and variance:

σ2
we

=
∑

(i1...iq)∈{0;1}q

Pr
(

Λ(n, i1 . . . iq)
)

q
∑

k=1

ikσ
2
k (43)

APPENDIX B

SMOOTHING THE DISCONTINUITIES OF THE

TRANSFORMATION NOISE w

The smoothing process is illustrated by Fig. 16. The general

principle is to decompose w into two components, a contin-

uous part wcont and a piece-wise-constant signal wdisc (with

jumps), and then to low-pass filter wdisc.

The transformation noise w is obtained by subtracting z to x
and then differentiated. The difference signal dw is thresholded

only at block transitions and then integrated, yielding wcont.

Subtracting the resulting signal to w yields a piece-wise-

constant signal wdisc, containing the discontinuous component

of w. Low-pass filtering wdisc and adding the result to wcont

provides a signal w̃, corresponding to w with smoothed block-

transitions. Adding it to x provides the new z.

The thresholding is performed as follows. Let dw(n) =
w(n) − w(n − 1). We define dwmed(n) as the median value

of dw on the interval n ± M1, where M1 is a small fixed

integer. Let σ2
d(n) the estimated variance of dw − dwmed on

the interval n±M2, where M2 is a fixed integer (M2 ≫ M1).

The bigger |dw(n) − dwmed(n)| is (relatively to σd(n)), the

more probably a discontinuity occurred in w. Consequently,

if |dw(n) − dwmed(n)| > 2σd(n), then dw(n) is replaced by

dwmed(n), otherwise it is let unchanged.

The low-pass filter has a triangular impulse response and is

non-causal in such a way as to introduce no delay.

In the experiments described in Section IV, M1 = 2, M2

corresponds to 4ms and the low-pass filter has an impulse

response of length 1ms.

APPENDIX C

CHECKING WHETHER δ(i, .) IS A BERNOULLI PROCESS

For each iteration i, we want to check whether the decision

δ(i, n) of adding δwe
(n) to ez(n) actually follows a Bernoulli

process of parameter pi. Denoting by Ti the random variable

“number of zeros between two ones in δ(i, .)”, this means
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Fig. 17. How Ti fits a geometric law of parameter p̂i, for the first and last
iterations, in the bass (a) and piano (b) experiments.

checking whether the Ti(j) are independent and match a

geometric law of parameter pi.
We assessed the independence as follows [35]. First, a

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test checks the

stationarity11. Then, if the process can be considered as

stationary, the independence can be assessed through the auto-

correlation coefficients ρ(k): if the latter are inside the 95 %

confidence interval around 0, the hypothesis of independence

can be validated.

Assuming that Ti follows a geometric law, the estimation

of the parameter pi according to the maximum likelihood is

given by p̂i = 1/(1 + Ti), where Ti is the empirical mean

of Ti. We assessed the goodness of fit of the geometric law

of parameter p̂i graphically and through the chi-squared test

for fit. For each i, we computed the test statistics for 1000

draws of 1000 individuals of Ti and observed the percentage

of statistics χ2 above the 5 % critical value.

The results are summarized in Table IV and Fig. 17,

for the experiments of subsection IV-A. The assumption of

independence for Ti is valid for both bass and piano. As

illustrated by Fig. 17, the histogram of Ti matches well a

geometric law, except in the tail of the distribution for the

piano (for probabilities lower than 10−3, emphasized here by

the log-scale), which leads to poor results in the chi-squared

tests.

For the experiments of subsection IV-B, the stationarity of

11We used the “grocer” toolbox of Scilab:
https://atoms.scilab.org/toolboxes/grocer

TABLE IV
RESULTS OF STATISTICAL TESTS ON Ti FOR THE BASS AND PIANO

EXPERIMENTS. FOR THE KPSS TEST, Ax% DENOTES ACCEPTATION AT x%
RISK AND R MEANS REJECTION. FOR THE AUTO-CORRELATION TEST, WE

COMPUTED THE 100 FIRST AUTO-CORRELATION COEFFICIENTS. Q95

DENOTES THE 95 % CONFIDENCE INTERVAL.
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1 A10% 9 9 A10% 14 22
2 A10% 10 10 A10% 11 26
3 A5% 4 9 A10% 14 33
4 A10% 8 11 A10% 8 38

5 A10% 4 10 A5% 9 38
6 A10% 8 12 R 3 43
7 A10% 2 16 A10% 10 48
8 A10% 4 17 A5% 9 47
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Fig. 18. How Ti fits a geometric law of parameter p̂i in the female speaker
experiment (first and 10th iterations).

Ti is rejected for i = 1 (p1 decreases during the iteration), and

accepted at 1 to 10% risk for i ≥ 2. For both speakers and all

iterations, the majority of the auto-correlation coefficients are

out of the 95% confidence interval around 0. Hence, the Ti(j)
cannot be considered as independent. Moreover, as illustrated

by Fig. 18, the histogram of Ti does not match a geometric

law: there are too much zeros and high values, i.e. δ(i, .)
contains too long sequences of zeros or ones. Consequently,

δ(i, .) here cannot be considered as a Bernoulli process.

For each of the 100 iterations, we computed the empirical

values of E[δwe(i, n) | δ(i, n) = 1] and E[δwe(i, n)δwe(i, n+
k) | δ(i, n)δ(i, n + k) = 1] for k = 1 to 100 (see condi-

tions (21,22)), and we counted how many of them are out of

the 95 % confidence interval around zero. The results reported

in Table V indicate that the conditions (21,22) are fulfilled or

almost fulfilled for most iterations.
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TABLE V
NUMBER OF ITERATIONS (AMONG 100) HAVING EMPIRICAL

E[δwe(i, n) | δ(i, n) = 1] AND MORE THAN 5 OR 10 (AMONG 100)
EMPIRICAL E[δwe(i, n)δwe(i, n+ k) | δ(i, n)δ(i, n+ k) = 1] OUT OF

THE 95 % CONFIDENCE INTERVAL AROUND ZERO.

Number of iterations having
more than 5 more than 10

E[δwe(i, n) E[δwe(i, n)δwe(i, n + k)

| δ(i, n) = 1] | δ(i, n)δ(i, n + k) = 1]

out of the 95 % confidence interval around 0
female 9 31 0

male 1 45 0

article.
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