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Systems of independent active particles embedded into a fluctuating environment are relevant to many areas

of soft-matter science. We use a minimal model of noninteracting spin-carrying Brownian particles in a Gaus-

sian field and show that activity-driven spin dynamics leads to patterned order. We find that the competition

between mediated interactions and active noise alone can yield such diverse behaviors as phase transitions and

microphase separation, from lamellar up to hexagonal ordering of clusters of opposite magnetization. These

rest on complex multibody interactions. We find regimes of stationary patterns, but also dynamical regimes of

relentless birth and growth of lumps of magnetization opposite to the surrounding one. Our approach combines

Monte-Carlo simulations with analytical methods based on dynamical density functional approaches.

PACS numbers: ...

Active matter encompasses a broad class of physical

systems, ranging from animal flocks [1–4], artificial self-

propelled particles [5, 6] and bacteria [7] to molecular mo-

tors [8], and pumping [9, 10] or multi-state particles such

as proteins [11]. While the former share the ability to ex-

tract energy from their environment and to convert it into

directed motion, the latter can change conformation and ex-

ert active forces upon their surrounding medium (actin fil-

aments, cell membrane). Particles that deform a correlated

elastic medium experience field-mediated interactions with

a fluctuation-induced component [12, 13], as illustrated in

Fig. 1. Mediated interactions occur for instance between in-

terfaces, colloids or proteins in soft-matter media such as crit-

ical binary mixtures [14, 15], liquid crystals [16, 17], capillary

interfaces [18, 19] and bio-membranes [20–24], including in

nonequilibrium settings [25].

An early approach to the question of why and how active

particles, e.g., proteins in cell membranes, self-organize ap-

peared in [11, 26, 27]. In a parallel series of works on reac-

tive two-state particle systems, spinodal decomposition cou-

pled to active flips between the states has been shown to lead

to a wealth of complex patterns. These have been described

in [28, 29], [30], [31, 32], and [33]. A common feature to

these approaches, necessary for the active flips to produce

nontrivial patterns, is the requirement to start from directly

interacting objects, either by assuming two-body interactions,

or in a coarse-grained form by describing these in terms of an

ad hoc Cahn-Hilliard field.

In this Letter we show that the emergence of activity-driven

patterns can arise from purely field-mediated interactions, in

the absence of any direct interactions between the particles.

The nature of the coupling between the particles and the field

is essential, as the existence of nonequilibrium phase transi-

tions completely rests on the physics governing the coupling.

Furthermore, out of equilibrium, the coupling of particles to

a field cannot be interpreted as effective direct interactions

between particles. We concentrate on systems whose only

nonequilibrium character resides in the active switching of

the particles between two states coupling differently to the

medium’s field. We do not rely on a simplified field–particle

FIG. 1. (color online) Two particles (up spins) coupled to a fluctu-

ating field (surface plot), favoring some value φ0 of the field. Inset:

equilibrium average force as a function of the average particle sepa-

ration, for the Hamiltonian described in the text. One particle is held

fixed and the other one is tethered to a strong harmonic trap. Sym-

bols: results of the numeric simulation (with incertitude). Solid line:

analytical force deriving from U(R) in the text. Parameters of the

model: r = 0.01, φ0 = 8, B = 1 and µ = 0.05.

density coupling. We treat the field-particles interactions at

the microscopic level (background illustration in Fig. 1), in

order to capture multi-body contributions and Casimir-like ef-

fects.

In order to investigate such phenomena, we have striven to

build up a model relying on the minimal necessary ingredi-

ents: Two populations of independent diffusing Ising parti-

cles, actively switching between their two states and interact-

ing (quadratically) with a background Gaussian field, make up

our model system. We refer to these particles as ASFIPs, i.e.

active switching field interacting particles. The complexity of

this system rests on the active nature of the particles, but also

on the dynamics of the field-mediated interactions. We treat

the dynamics of each particle and that of the field by equilib-

rium Langevin equations. The questions we ask are: i) Are

induced interactions coupled to activity sufficient to generate

emerging cooperative phenomena? ii) What is the role of ac-

tivity (in as much as it drives us away from equilibrium) in

generating complex patterns? iii) What is the role of multi-

body interactions and of Casimir-like forces in the states of
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matter that we observe?

We consider N non-interacting particles at positions rk(t),
1 ≤ k ≤ N , embedded in a medium whose elasticity is de-

scribed by a scalar Gaussian field φ(x, t). Our field φ might

refer to a biomembrane thickness [21, 23] or internal lipid

composition [34]. It may also refer to the shape of a biomem-

brane [20, 22] or to that of an interface under gravity [18, 19].

While all these systems are well described by Gaussian fluctu-

ating fields, the specifics of the Hamiltonian is model depen-

dent. We choose the simplest model, with energy

H0 =

∫

d2x
[r

2
φ2 +

c

2
(∇φ)2

]

. (1)

To model particles that can be in two states, we attach a spin

variable Sk = ±1 to each particle. The underlying picture we

have in mind is that of protein inclusions changing conforma-

tion through external chemical activity [35]. The particle-field

coupling is a key-ingredient, we take:

Hint =

N
∑

k=1

B

2
(φ(rk)− Skφ0)

2
. (2)

The effect of this interaction is to adjust locally the field to a

spin-dependent amplitude ±φ0, with a strength governed by

the stiffness coefficient B. We draw the reader’s attention to

the quadratic nature of Hint. Linear couplings in the field

are quite unrealistic as they miss multibody and fluctuation-

induced interactions. We do not wish to discard such ingre-

dients that exist in real systems. The total energy becomes

H = H0 +Hint. We purposely omit excluded volume or any

other kind of direct interaction, which allows us to witness

field-induced phenomena only.

We endow φ with a purely relaxational dynamics satisfying

detailed balance:

∂tφ(x, t) = −Γ
δH

δφ(x, t)
+
√
2ΓT ξ(x, t), (3)

where T is the temperature in energy units, Γ the field mo-

bility and ξ(x, t) a Gaussian white noise. Particles diffuse

according to equilibrium overdamped Langevin equations:

drk
dt

= −µ∂H
∂rk

+
√

2µTηk(t), (4)

where µ is a mobility coefficient (assumed to be spin and field

independent), and the ηk(t)’s are independent Gaussian white

noises. We use the simplifying assumption that ηk and ξ are

independent (as is generic in soft matter, see, e.g. Ref. [10]

for proteins in biomembranes).

Finally, the out-of-equilibrium dynamics arises from the in-

ternal degree of freedom of the particles. Each particle flips

through the action of an external energy source (e.g., photons,

chemical reactions), with fixed rates:

Sk = −1
α−−⇀↽−−
γ

Sk = +1. (ASFIP) (5)

This is the one process breaking detailed balance for ASFIPs

due to the coupling with the field and particle dynamics.

Since we want to understand how our system behaves ex-

actly, taking into account detailed out-of-equilibrium medi-

ated interactions, multibody and fluctuation-induced effects

without relying on approximate analytical methods, we first

perform Monte Carlo simulations. We discretize our equa-

tions on a lattice with spacing a with the normalization a =
T = Γ = c = 1 (see SM, Sec. I). The remaining param-

eters are r, fixing the field’s correlation length r−1/2, B the

stiffness of the spin–field coupling, φ0 the targeted field, and

the dynamical parameters µ, α and γ, all scaled by the field’s

mobility.

We implement discrete time Monte Carlo simulations on a

two dimensional (2D) square lattice of size L × L with pe-

riodic boundary conditions, as detailed in the Supplemental

Material (SM, Sec. II). The field is defined on the lattice sites

and the particles move from site to adjacent site. Between

times t and t + ∆t, particles can hop, or flip spin, or stay on

the same site. To take into account the relative dynamics of

the particles and the field, we implement a tower sampling

algorithm [36] instead of a Metropolis one.

In order to characterize the field-mediated interaction in

equilibrium, we first study the force exchanged by two par-

ticles a distance R apart in the manner described in Fig. 1 (or

Sec. III in SM for a precise description). The effective po-

tential U(R) between these two particles can be derived (see

SM) from a field-theoretic calculation. As shown in Fig. 1, the

force is well fitted by U ′(R), which confirms the validity of

our Monte Carlo simulation. The force is attractive for equal

spins and decays typically over the field correlation length.

We found that for R ≥ 1 and φ0 & 3 the fluctuation-induced

component of the force is negligible, but this does not mean

that it must be so out of equilibrium. Actually, the standard

deviation of the force, which has a component coming from

the Langevin force on the particle and another coming from

the fluctuations of the field, is much larger than its average.

Note that whereas in equilibrium the field samples thermally

all of its configurations (even when the particles move), in the

out-of-equilibrium case the dynamics of the field could yield

retarded effects with important consequences.

Before we embark into a full description of the out-of-

equilibrium ASFIPs, we wish to introduce their equilibrium

counterpart, for future comparison purposes. In equilibrium,

Switching Field Interacting Particles (SFIPs) have transition

rates ∝ exp (±wk) with wk = Bφ0φ(rk) half the energy

variation in a spin flip. Such particles experience equilib-

rium field mediated-interactions and flips, while they diffuse

on the lattice. LetN be the total number of particles and ρ0 =
N/L2. At fixed r and φ0, we increase the coupling strength

B. We observe first a paramagnetic–ferromagneticphase tran-

sition (Fig. 2a), then a phase separation into a dense ferromag-

netic fluid coexisting with a paramagnetic gas (Fig. 2b). These

states obviously do not depend on the dynamical parameter

µ. We characterize the magnetization of each homogeneous

phase by the order parameter ψ = 〈ρ+ − ρ−〉/〈ρ〉, where ρ±
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FIG. 2. (color online) (a) SFIPs in a box with periodic boundary con-

ditions, L = 150, ρ0 = 0.05, r = 0.01, φ0 = 8 and B = 0.07,

yielding a ferromagnetic state. Red (blue) dots indicate particles

with up (down) spins. Inset: magnetization order parameter as a

function of B. Light orange (dark purple) symbols correspond to B
increasing (decreasing). (b) SFIPs for B = 0.26 (same other pa-

rameters) showing the coexistence of a ferromagnetic liquid and a

paramagnetic gas (c) Phase diagram of SFIPs in terms of total den-

sity and coupling strength for r = 0.01, φ0 = 8 and µ = 5. Solid

lines: mean-field predictions for the paramagnetic–ferromagnetic

transition (black) and for the binodal curve of the phase separation

(green, or gray). The corresponding dashed lines are the results of the

Monte Carlo simulations. (d) ASFIPs for the same parameters and

α = γ = 0.1. Solid red line: mean-field prediction for the transition

to a patterned phase. Yellow (light gray) zone: beginning of segre-

gation. Orange (gray) zone: ferromagnetic stripes and macroscopic

clusters.

is the density of particles with ±1 spins and ρ = ρ++ρ−, and

we find that the paramagnetic–ferromagnetic phase transition

is compatible with a continuous one (Fig. 2a, inset).

Since SFIPs are in equilibrium, we can rely on thermody-

namics to study their behavior. The mean-field energy density

naturally deriving from H is

fmf =
r

2
φ2 +

B

2
ρ+(φ− φ0)

2 +
B

2
(ρ− ρ+)(φ+ φ0)

2

+ ρ+ ln ρ+ + (ρ− ρ+) ln(ρ− ρ+). (6)

Since ρ is the only conserved quantity, we minimize fmf with

respect to φ and ρ+, which yields an energy density f ′
mf(ρ)

and φ = Bφ0(2ρ
+−ρ)/(r+Bρ) with either ρ+ = ρ− = ρ/2

(paramagnetic phase) or ρ+ 6= ρ− (ferromagnetic phase). At

low values of B, the system is uniform and there is a con-

tinuous paramagnetic–ferromagnetic transition at B
(mf)
c =

(1+
√

1 + 4r φ20/ρ0)/(2φ
2
0). At higher values ofB, we obtain

through the double tangent construction on f ′
mf(ρ) a phase

separation between a low density paramagnetic phase and a

high density ferromagnetic phase. These mean-field predic-

tions correspond to the continuous lines of Fig. 2c while the

results of the Monte Carlo simulations are indicated by the

dashed lines. The agreement is all the better as we are work-

ing at large φ0 or low T

We now return to our original nonequilibrium ASFIPs. The

phase diagram of ASFIPs undergoing symmetric flips (α = γ)

is shown in Fig. 2d. The system is always paramagnetic on

global average, due to the imposed flips, however increasing

B at fixed ρ0 yields first a transition from a paramagnetic

gas to ferromagnetic clusters of either magnetizations, as il-

lustrated in Fig. 3a, then to a phase of dynamical ferromag-

netic stripes. A typical snapshot of the macroscopic stripes

is shown in Fig. 3c. For asymmetric flips (e.g., α = 3γ) we

observe a dynamical hexagonal pattern of clusters (Fig. 3b).

These clusters are formed by the particles with the higher flip

rate.

To gain insight into the physics of this pattern creation,

we have computed the average fluxes of the particles and the

map of the φ field (Fig. 3d). First, we see that high (low)

field regions have a majority of spin up (spin down) particles.

Hence, ASFIPs also tend to phase separate due to the field

mediated interactions. We observe that spin up particles travel

from regions of low spin-up density to regions of high spin-up

density, just as for the coarsening of the equilibrium SFIP’s.

However, these activity-driven fluxes never vanish, which is

specific to being out of equilibrium. Therefore, whenever a

particle flips, it is expelled by the field-mediated interactions

towards the nearest region matching its updated spin. This is

the mechanism by which pattern formation occurs.

In addition, within large enough regions of a given mag-

netization, we observe the systematic nucleation and growth

of lumps of opposite magnetization (e.g., small visible blue

islands in Fig. 3b or red and blue ones in 3c), as illustrated

by the movies in the SM, Sec. V. They diffuse, get expelled

and eventually merge into a domain of the same magnetiza-

tion. The mechanism allowing for this behavior is intrinsi-

cally out of equilibrium. For SFIPs, energy balance quickly

prevents the growth of lumps, whereas for ASFIPs long lived

spin states are allowed to gather and form the seed for a dy-

namic lump which then grows by accretion.

What is the importance of fluctuation-induced interactions

and multi-body effects in the ASFIP system? If we turn off the

field noise ξ(x, t) (while keeping the dynamics on the par-

ticles unchanged), we observe that particle segregation and

pattern formation occur as soon as B exceeds the mean-field

threshold (solid red line in Fig. 2d). Thermal fluctuations

tend to destroy patterns and fluctuation-induced forces are too

weak to play any pattern-favoring role. In order to investigate

multi-body effects, we have also replaced the quadratic cou-

pling of Eq. (2) with a linear coupling adjusted to yield, up

to a very good approximation, the same two-body field medi-

ated interaction (see SM). This results in the condensation of

the particles on a unique site for SFIP’s and in the absence of

activity driven patterns for ASFIP’s. Multibody interactions

are thus essential. We have checked that adding a hard-core

repulsion, in the quadratic coupling case, has almost no ef-
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FIG. 3. (color online) Snapshots of the patterns created by ASFIPs.

The parameters are r = 0.01, φ0 = 8. Red (blue) dots indicate par-

ticles with up (down) spins. (a) Square phase obtained for symmetric

flips (B = 0.26, ρ0 = 0.1, µ = 2.5, γ = α = 0.005, L = 180).

(b) Hexagonal phase of clusters (B = 0.15, ρ0 = 0.4, µ = 5.0,

α = 0.02, γ = α/3, L = 160). (c) Striped phase obtained for

symmetric flips (B = 0.15, ρ0 = 0.4, µ = 5.0, γ = α = 0.02,

L = 160). (d) shows the corresponding φ field map of (c) and the

time average of the fluxes of spin-up particles.

fect on the phase diagram, indicating that modest short-range

interaction are irrelevant in our system.

Let us rationalize our findings on the phase diagram with

a dynamical mean-field approach. Since ASFIPs diffuse by

means of overdamped Langevin equations, we implement a

Dean–Kawasaki [37, 38] approach in the noiseless limit. The

evolution equations then read ∂ρ± +∇ · j± = 0 with j± =
−µρ±∇(∂fmf/∂ρ

±). Taking spin exchange into account, we

arrive at the evolution equations:

∂tρ
± = µ∇2ρ± + µB∇ ·

[

ρ±(φ∓ φ0)∇φ
]

± αρ− ∓ γρ+,

∂tφ = ∇2φ− rφ−Bρ+(φ − φ0)−Bρ−(φ+ φ0). (7)

Linear stability analysis (LSA) shows that above a thresh-

old in B the stationary and homogeneous solution [ρ+s =
ρ0α/(α + γ), ρ−s = ρ0γ/(α + γ) and φs = Bφ0(ρ

+
s −

ρ−s )/(r + Bρ0)] is no longer stable, indicating the onset of

a patterned phase. For symmetric flips, γ = α, this threshold

reads B
(mf)
a = (1 +

√

1 + 4rφ20/ρ0 + 4φ0s + 2φ0s)/(2φ
2
0),

where s =
√

2α/(µρ0). The agreement with the results of

the Monte Carlo simulations is satisfying (Fig. 2d).

In dimensionful form, B
(mf)
a turns out to be independent

of the field mobility Γ. We have checked this property in

the Monte Carlo simulations and found indeed that varying

Γ over five orders of magnitude has no effect on the phase

diagram. The times scales involved in the pattern formation,

however, depend on Γ. In addition, LSA shows that varying

dynamical parameters Γ, or µ and α while keeping s con-

stant, does not change the interval [kmin, kmax] over which

temporal eigenvalues destabilize the homogeneous solution.

We also found that increasing the particles’ mobility µ (while

keeping all other parameters fixed) enlarges the domain where

patterns are stable in the phase diagram. We expect that tak-

ing the s → 0 limit in B
(mf)
a leads us to equilibrium. In-

deed, when sending α → 0 or µ → ∞, the field is effectively

sampled in an equilibrium manner. In between two flips, the

diffusion of the particles is a quasi-equilibrium process. Fur-

thermore, LSA confirms that patterns are specific to out-of-

equilibrium since sending s → 0 yields kmin → 0, and then

we end up with a more conventional coarsening of the binary

mixture in that regime. What is more surprising, however, is

that B
(mf)
a → B

(mf)
c when s → 0. This is due to the spe-

cific choice α = γ, which protects the up-down symmetry,

hence leaving the phase boundary unchanged in the equilib-

rium limit (the scenario does not hold for α 6= γ).

We are now in a position to summarize the answers to our

original questions. Starting from a microscopic model where

noninteracting particles are coupled to a Gaussian field, we

have proved that field-mediated interactions combined with

activity can generate a wealth of new emerging cooperative

phenomena. This is relevant for soft-matter systems in which

interactions are mostly indirect, field-mediated. In our sys-

tem, it is the presence of activity which drives complex pat-

terns of particle clusters by a continuous tossing in and out

of diffusing particles. The quadratic coupling that we have

used captures both multibody and fluctuation-induced inter-

actions. While the former is of paramount relevance, the lat-

ter is entirely dominated by thermal fluctuations and can be

neglected. We see several directions along which we could

expand our findings. From a theoretical standpoint, we wish

to investigate the effect of varying the details of the correla-

tor (membranes will feature higher derivatives for instance).

Similarly, the particle–field coupling may also involve higher

derivatives depending on physical context. Exploring the con-

sequences of hydrodynamic effects is also of great relevance.

Finally, it would be interesting to investigate such emerging

phenomena in experimental systems of active particles, even

in athermal macroscopic systems where activity alone might

suffice.
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