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Using a partial-wave method for sound-mean-flow scattering problems
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We present a semianalytical method, based on a partial-wave expansion and valid in the short wavelength
limit for small Mach number flows, to analyze sound—vortical-flow interactions. It is more powerful than
ray-tracing methods because it gives both amplitude and phase of the sound wave, and because it is less
restrictive on the smallness of the wavelength. In contrast with the Born approximation approach, this method
allows the computation of the sound field in the whole interaction dorfiariuding the near field and
preserves energy conservation. Vortical flows with finite circulation are amenable to our analysis, which gives
a satisfactory description of wave front dislocation by vorticity, in good agreement with direct numerical
simulations. We extend previous versions of this method to the case of smooth vorticity profiles which are
observed in aeroacoustics experiments.
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[. INTRODUCTION write a wave equation for the sound waje3] with source
terms expressing the coupling of sound with mean flow and
Sound-mean-flow interactions play a prominent part insolve the problem in the far-field limit in the first Born ap-
many physical phenomena, dwelling from atmospheric andproximation[19,20. This treatment, valid for small Mach
oceanographic contekt] to laboratory flow instabilitie$2]. ~ numberM<\/L, is useful in the large wavelength limit. As
It is still an open question to know how sound propagates irfhe wavelength decrease${L/N must remain small to en-
turbulent media, and how its characteristics are influenced b§ure the validity of the Born approximation. Thus, the short
the mean flow. We will focus our attention in this paper onWavelength limit cannot be easily analyzed with this method.
the short wavelength limit, when the sound wavelengts _ We_ will use in 'FhIS paper another way of investigation: we
smaller than the typical mean-flow scdle In atmospheric In€arize the basic equations and take the short wavelength
and oceanographic conteit, 3,4, this approximation is of- limit. In this limit, if ¢ () is any quantity related to the
ten well verified. This limit is also useful to analyze some mean flow(the sound wave we have
aspects of sound propagation in turbulent media in labora- R Yo R
tory experiment§5-7]. PV roll ~ T_ < Yoll V il ~ Kt (1)
In the very small wavelength limit, the acoustical interac-
tion can be interpreted using the ray-tracing methd®].  hen at first order beyond the geometric limit, the sound

Starting with a power law expansion of the wave amplitudeyropagation can be expressed by the modified wave equation
in the wavelength, the zeroth ordgeometric limij leads to

two coupled differential equations involving the mean-flow
specifications, the wave vectptk(7)||=27/\(7)], and the
ray pathr (7) in terms ofr, the acoustical ray paramef&. R
The solution of these sets of equations gives a qualitativevherev is the mean-flow velocity is the speed of sound
description of the mean-flow effects on the geometry of theand pg is the sound pressure perturbation. Then, an angular
rays [10—13. A more quantitative approach requires the Fourier transform is applied to Eq2) and allows the com-
acoustical field values. The first-order terms of the waveplete computation of the sound field. Each Fourier mode is
length power law expansion lead to the conservation of thealled apartial wave and the complete acoustic field is the
acoustical energy along a r49,14]. Thus, one can easily superpositiorfinterference pattejrof all those partial waves.
compute the field properties along a ray, and then estimat&his method was already used for sound—mean-flow interac-
the spatial field repartitiohl5]. However, this method is no tion problems, to study sound scatteriigitroducing, in
more valid in presence of caustics, when two or more raysnalogy with scattering problems in quantum mechanics, the
cross: the physical requirement of a finite acoustical energgoncept of phase shift§21,22, spiral waves phenomena
leads to a more complicated way of computatji@d]. Nev-  [23], and sound absorption by a vortg24].
ertheless, the geometric limit remains a qualitative but rel- The partial-wave method that we propose here is an alter-
evant method of analys{d6,17] in many problems involv- native way to ray-tracing methods for sound—mean-flow
ing sound-flow interactions. scattering problem in the short wavelength limit: it allows
An alternative way of solving this problem is to start with the full computation of the acoustic fieldamplitude and
the linearized equations in the sound variables. One can thgshase in the whole domain of interactiotboth the far field

9 N . 2
E+vo-V) ps—C?Aps=0, )
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and the near field It will be applied to the scattering of a of Eq.(6). Equation(6) was also derived by Obukhov for the
sound wave(wavelength\) by a vortical stationary mean sound velocity potential in his studies of sound scattering by
flow (typical length scald.) in the small wavelength limit turbulent flows[25].

A<<L, but in our calculations this limit is much less restric- It should be mentioned here that the wave equation must
tive than in geometrical acoustics approaches. be derived first and only then the short wavelength limit be

The paper is organized as follows: in the first part, wetaken. Taking the short wavelength limit of Eq8) and (4)

derive a modified wave equation for the interaction of aand Wr|t|ng a wave equation can |ead to a mis|eading phys|_
sound wave with a mean stationary flow. In the second parfa| analysis. When deriving E¢6), one must take the tem-
we §o|ve this equation in the bidimensional case using th%oral derivative of Eq(3) and the spatial derivative of Eq.
partial-wave method and we formally compute the full (4). Then, both the wave vectdrand the sound frequency

acoustical field. In the last part, we present examples to Chaﬁppear and can modify the order of magnitude of the source
acterize and illustrate the method.

terms.
Equation(6), valid in the short wavelength limit for small
Il. THE WAVE EQUATION IN THE SHORT Mach number flows, shows that the interaction between
WAVELENGTH LIMIT sound and flows is twofold. First, the sound wave is locally

Let us consider an acoustic waveensity variationp,, advected by'the mean flow, Which is a purely kinematic ef-
fluid velocity o, and wave celerite=\p/p2) moving in fect: fc_Jr a uniform mean flow velocity, E¢6) Corrgsponds to

) y s’ - Y= VPs/Ps ] 9 a Galilean transformation of the wave equation from the
an isentropic mean flowpo, vo). The mean flow is assumed ean-flow reference to the laboratory reference. Second, Eq.

to be incompressible, which means a small Mach numbe(6) is the analogous, in a compact form due to the geometri-

M<1.’ and the acoustic wave is assumed to be a small PEEa approximations, of the wave equation derived in the
turbation of the mean flow. Moreover, the sound frequency i, ) \nd_mean-flow interaction studiEs, 26 as mentioned
assumed to be larger than the typical frequency of the Meay ove. Then, the scattering by the mea’m-ﬂow velocity gradi-
flow, which physically means that the flow is frozen during : '

its interaction with the sound wave. ents is also con3|d.ered in E). .
Starting with the decomposition of the physical fields It should be Qot|ced that acoustical prob!ems' and surfage
> -~ . wave problems in the shallow water approximation are simi-
=potps, V=voFvs, and p=po+ps, we can write the 5 157) pecause both type of waves are nondispersive. Thus,
mass and momentum conservation equations for the meglig ot surprising that Eq(6) is stricly analogous to the
flow. To the leading order in the small quantities/po,  \ave equation2.7) derived by Costet al.[28] to describe
vs/vg, andps/po, the sound wave fields are governed by 6 interaction between a short wavelength surface wave and
5 a vortical flow in the shallow water approximation.
SV (pove) =0, 3
. PARTIAL-WAVE METHOD IN THE SOUND
Do, . . e - SCATTERING PROBLEM
Po g *Polvs gradjut ps(vo- gradjue=—cogradps. The partial-wavehereafter PWmethod is generally used
(4)  for scattering problems both in electromagnetif28] and
guantum mechanid80] when the scatterers have a spherical
We have introduced the particle derivative with respect tQr a cylindrical symmetry. In a three-dimensional problem,

vo: introducing the spherical harmonic functions allows to com-
pute the scattering fiel¢or the wave functionin terms of
D ¢ . __ PW, depending only on the radiusIn the two-dimensional
Di— 7 Tvo-grad. (5  case, using the polar coordinates, the PW method consists in
an angular Fourier transform and also leads to PW that only

depends om.

In the context of sound scattering by a vortical flow, we
will consider an axisymmetric bidimensional single vortex of
spatial extensiorL,: its vorticity vanishes for=L,,. Its
velocity only depends on the radiusvo(r)=U(r) 8, where

6 is the unit orthoradial vector of the polar coordinates. As-

From Egs.(3) and(4), we can write a wave equation with a
source term. This source term is at least of ottt3?, with
B=kL=27L/\. Inthe short wavelength limi <L, which
meansB>1, and to the first order in\I<1, this source
term is negligible and the wave equation becof23

D2 suming a small Mach numbetM=v,/cy<1 and a short
_Z_CSA ps=0 (6)  wavelength with respect to_ the f|0w Iengﬂ]_“, B=KkL,
Dt =27 L,/\>1, Eq.(6) describes the interaction of the vor-

tical flow with the sound wave. Then, we use the PW method
with ¢y the sound celerity in the medium at rgst=c, to compute the sound fields. In this case, the PW method
+0(M?)]. Then, one gets easily E() for the sound pres- simply consists in an angular Fourier transform, as pointed
sure. In the following, we will focus on the density solutions out before.
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A. Partial-wave equation structure of mean flows allows us to modelize a large number
Since the flow is axisymmetric, E¢5) reads E)slzlphsygical situations involving axisymmetric mean flows
D o U() o
Di_ i T 70 (7 1. Outer solution
Forr=L,,, injecting the velocity field12) in Eq. (10),
and Eq.(6) becomes we get
#? 19 14 1[a U a\? '
o2 T (292 g2\at 0 pnt -tk 7 pn=0, (13

Introducing a partial-wave development for a monochro-
matic sougd nge of pulsationr2 P wherem=n?+2n« anda=kI'/(27 c,). For a nonzero-

circulation vortex @# 0), the indexm may be real or even

p (F.1) +o0 complex if O>n>—2«. In either cases, the outer solution
s\ :R{( 2 pn(r)einﬁ) ei2ﬂ'vt:|
n=—co

Pso

can be expressed in terms of Bessel and Hankel functions,

< | outy ¢ Im(kr) | Hi(kn)
:R%n_Ew pn(r)el(n0—2wvt):|, (9) Pn (r)—dn \]m(ﬁ) +enHE;ﬂ(ﬁ) , (14)

(Rg z] is the real part of the complex numbgy, Eq. (8)  whered, and e, are two numerical constants to be deter-
leads, at orderM, to an ordinary differential equation for mined by the boundary conditions.
each partial wave,(r), In a seminal paper, Bermst al.[34] have shown the close
analogy between the crossing of a potential vector of finite
, nkur) n2 circulation by a charged particle in quantum mechanics and
k= co—r_ r_2 pn=0 (10 the interaction between a surface wave and a vortical flow in
an ordinary fluid. The vortex has the same effect on the sur-
face waves as the vector potential on the wave function: the
finite circulation implies a phase shift, characterized by the
parameter, in either the wave function or the surface wave,
and the wave fronts display a dislocatidthe so-called
Aharonov-Bohm effect in quantum mechani35]). This
dislocated wave is a non perturbative interaction tétine
dislocation amplitude is the same as that of the wasad

!
prt ?4—

n

with k=27v/cqy, the prime denoting a derivation with re-
spect tor.

The complete solution is obtained when EL) is solved
for each partial wave, and the full sound wave density varia

tion p4(r,t) is constructed using Eq9).

B. Partial-wave solution persists arbitrarily far from the interaction region, which is
describe such a flow with a piecewise vorticity profile: ing as 14 in two dimensions
The wave front dislocation is a phase shift that cannot be
Q=Qip(r), rsLy, directly observed in quantum mechanj8§], whereas in the
acoustical or surface waves cases, both the phase and ampli-
Q=Qnter(r), Lisr<Lg, (11)  tude of the waves can be measured: the Berry’s analogy was
experimentally confirmed by Vivancet al. [37] in the sur-
0=0, r=L,. face wave case and in the acoustical case by Rowk [31]

using the time reversal mirror method and by Lakirel
The corresponding velocity can then be expressed in thPinton[32] with direct ultrasonic measurements.

form The dislocation parameter is zero when the vortex has
no circulation. It leads to Bessel functions of integer order in
U(r)=Uin(r), rs=L, solution(14): there is no Aharonov-Bohm effect in this case.
Thus, in classical wave scattering experiments, a dislocated
U(r)=Uipter(r), Lisr<Lp, (120 wave front can be interpreted as the signature of a vortical

flow with a global circulatior{37,38|.

r
U(ry==—, r=Ly,

2mr’ 2. Inner solution

) ) ) ] In the vortex region, we must solve
I' being the circulation of the mean flow. We impose the
continuity of the fluid velocityfand of the fluid pressuréor , 2
: . P p NKUpie(r) n
density] at the boundaries between the three domains: p//+_”+ K2—2 intert" /7 pn=0 (15)
Uin(L)) =Uiner(Li) and Ujpee(Lm)=T/(27Ly). This o Cof re

036604-3



R. BERTHET AND C. COSTE PHYSICAL REVIEW B7, 036604 (2003
The explicit form of the three functions|!, F'*®", and
GMe" obviously depends on the details of the velocity pro-
file.

for Lisr<L, and

v P [ o kU 02
pht | K2 Slpn=0 (19

3. Matching of the three solutions
forr<L;.

In the regionr<L;, U;,/r is an angular velocity: it must o ;
remain finite whenr goes to zero. Thus, in this limit, to compute the five integration constarts, by, Cp, dy,

U, /r<n2/r? and Eq.(16) always becomes a usual Besseland e,. They are fixed by requiring the continuity of both

equation: its solution is a linear combination of Bessel anc}he density varlathn and t_he fluid velocity for the _sound
Neumann functions andN. Whenr goes to zero, the Neu- Wave at the matching locations=L; andr =Ly,. This im-
mann function diverges, and so does one of the solutions dplies _the continuity 0P, for each '?W’ qnd fror_n Edd) the
Eq. (16). This latter must consequently be excluded, in orde€lOCity continuity leads to that gf, . This provides a set of
to get a finite sound field everywhere. The inner solution carfour equations. _ .

thus be expressed in a formal way in both regions, using a set 1he fifth equation comes from a topological condition on

To achieve the determination of the sound wave, we have

of only three numerical constangs,, b,, andc,:

the sound field at infinity: as pointed out before, far from the
mean flow,kr— o, the sound wave should be the s{i&9]

_ Fin“(r) of a scattered wave, decreasing like/2¥, and a dislocated
pn (1) =ay— , (17)  wave of constant amplitudg28,34. This condition reads
Fn (L) [34]

whereFin“(r) is that solution of Eq(16) which is bounded at

the originr=0, and dp=(—=1)"In(B) (19
Finter(r) Ginter(r)
inter _ n n P .
pn o (N)=by = +Cn inter . (18  and the continuity conditions lead to the nonhomogeneous
Foo(Lm) Gy (L) system
|
1 - Finnter(Li) - Ginnter(Li) 0
Finnter(Lm) Ginnter(Lm)
inyroy intery sy interys y an 0
(F)'(L) (F™) (L) (G ™) (L) 0 b 0
inqp N inter N inter n_
Fn(()L.) Fa ) (Lm) G ) (Lm) ) c, (=)™ (B) (20)
a e —i)mJy;
intery s intery s 1l . ( ) m(ﬂ)
0 (Fa ™)' (L) (Gh ™) '(Lm)  Hm(B)
Fre'(Lm) G (L) Hi(B)
|
Then, the complete solutigpy is o
ps(r,f),t) _ S
ol 0.1 . FIO) o e —R{n_Ew ((—n JIm(Kr)
—o R :E_x RS T .
s0 n n (Li) Hi(kn))
(21) +enH1—(ﬁ) el(m‘)—Zmzt) y I'?Lm, (23)
Finter(r) "
n

ps(r,ﬁ,t) :R{ 2 (b

Pso e W =L
inter
+qu1—m> ei(n0—27rv’[)‘|, Ligrng,
Glnnter(Lm)

(22

where the constants,, b,, ¢,, ande, are given by the
solution of Eq.(20). All our PW calculations are done using
MATHEMATICA . The symbolic computation capabilities of
this software are useful to calculate the constants.

In the limit «— 0, m=|n| and the outside sound wave is
the exact sum of the incident plane wave and a wave scat-
tered by a cylindrical distributiof4Q]. It should be pointed
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out that we take here into account the inner structure of thigar from the vortex corekr>1, we can expand ikr the

distribution[see Eq.(20)]. Hankel functionsH? :
4. Scattering amplitude . 2 .
_ o HL(kr)=(=i)"\/——e*r e 7" (30
Assuming a linear incident plane wave of wave nuniger wkr
wavelengthA=27/k, celerity ¢, frequency v=\/c, and ikr . .
density amplitudepy , We recover the'*"/ r radial evolution, and can express the
scattering amplitudé(6) as
pi=poi R €'k r2m0], (24 5 = oi (6= 7l4—mi2)
. . _ f(0)=\/—kE e (31
two quantities of major importance for sound scattering stud- TKn== o HX(B)

ies can be definef40]: the scattered sound wayg.,; and
the scattered amplitudd 6). The former is deduced from, ~ The scattering cross section can then be formally computed

andp;: in terms of the partial wave coefficiengs :
o 2
Ps=pPit Pscat (25) o _i €n (32)
t_ .
T k== [HLB)

and the latter, only defined for>27 L?/\ (far-field ap-

proximation), is deduced fronpsca; andp; by 5. Conservation of the acoustical energy

Another way to computerg.,; iS by using the two-
(26)  dimensionnal optical theoref29,42]

) elkr
Pscat™ R{ poi f( H)eil(zwm) T

8w :
in two dimensions. The 3 factor in Eq.(26) comes from Tscart Tabs= 0=\ 7~ IM[f(=) e (33
the energy conservation in a two-dimensional probléfe)
characterizes the angular structure of the sound wave resuktp:  locates the forward direction, see Eg8) and Im()
ing from the scattering process. It is directly related to thejs the imaginary part of the complex numtsr

scattering cross section: It simply expresses the energy conservation during the
) scattering process. As we do not consider any source of ab-
Feca= fo 1£(6)[2d6, (27)  Sorption,o,ps=0 and we expect
Oscat— Ot - (34

an important parameter to analyze the scattering efficiency. .
The wave front dislocation is a nonperturbative effect due oM Eqs(31) and(32), it is a very hard task to demonstrate

to the finite circulation of the vortical flow at infinity. Hence 1S €quality because of the cumbersome expression of the
for a compact mean flow of typical side (no velocity cir- coefficientse,,. Nevertheless, the quantum problem formally

culation forr=L), there is no dislocated wave, and the in- analogous to our acoustical problem is the interaction be-

cident plane wave is the exact solution of the scattering pro ween a particle and an axisymmetrical poter¥i@t): start-

lem far from the vortex. In the context of our calculations, N9 With the Schrdinger equatiori30]

a=0, m(n,a) =|n| wheren is an integer, and Eq19) leads om

to the classical decomposition of plane waves in series of AV + —[E-V(1)]¥=0, (35)
Bessel functiongsee Ref[41], formula (8.511) and notice h

that this choice implies to locate the forward directionéin

=) one can introduce a partial-wave development of the wave
function ¥,

pi ko — + 00

=R el(k-r 2mt) . .

Poi 4 | V(= >, W,(r)e'’ (36)

n=-—ow
=RE{ efi(zm)n; (—i)"e'" 3 (kr)|.  (28)  Then, each partial wav®, satisfies
’ 2

Comparing this last expression with the expression of the v+ qi+ k2_2m V) _ l_ v,=0. (37)
outer solution23), we conclude that the scattered wang h? r2

corresponds to the second term of the partial-wave solution:
Equation(37) is similar to Eq.(10). Moreover, if we con-
Pecatl20,1) o H%q(kr) _ sider a compact mean flow(r) in acoustics, its quantum
——F—F =R E nl—e'(’w*z’”’t) . (29 analog is an interaction potentigl(r) which decays faster
Poi n=-= "H(B) than 1f [43]. In the larger region(corresponding to the far
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field in acoustics and to the large distance scattering in quartheorem because they considered problems in which the
tum mechanics both equations have the same asymptotiomean-flow velocity field decays too slowly.
limits From Eq.(31), we get a complete analogy between our
partial-wave method and the phase-shift method:
X"+KPX=0  [X(r)=\rpa(roryr¥(n)]. (38 .

H&ﬂ(ﬁ)el(mw/Z) _ 2 -
We use this quantum mechanics analogy to solve our scat- e=—" 5 & "t T 1] (45)
tering problem: far from the scattering regips],

From Eq.(44), we can compute the scattering cross section

2
P\ /mcos{kr— na/2+8,), (39  Iscat
4 &
where the phase shiff, depends on the velocity field (r) Uscat:En:z_m SINP( S+ /4), (46)

[for U=0, 5,=0 and one gets the asymptotic expansion of
the partial waves describing a monochromatic plane waveynq the forward scattering amplitude
Eq. (42)]. Then the complete sound wape reads

0 N aimiay | 1 S i(28,+ 7/2)
por.60) \/iRe{ > B,cogkr—nm/2 f(g=m=e 2m n;w e 1. @7
Poi akr n=—o

Thus, we prove the conservation of the acoustical energy

i(nO—2mot) (33) and findogea= 07 -
one } 40 Therefore, the partial-wave analysis of H§), valid at

the first Mach order in the short wavelength, includes the
whereB, are numerical constants. On the other hand, frontonservation of the acoustical energy during the scattering
Egs.(24)—(26), ps can be expressed as process. If the interaction is analyzed in the first Born ap-

proximation, it is well known that the optical theorem cannot

ps(r,0,t) (T 2m0t) f(0) kr—2m0t) be sgtisf?ed:focM whereasox M 2, The second Born ap-
T_R e "'Te (41) proximation [30,44] or an asymptotical treatmen#5,46
must be considered to ensure energy conservation.
and the incident plane wave can be expanded [isé® Eq. Energy conser\(atio_n is satisfied here PecaUS? we solve
(28) and Ref[41], formula (8.453)] exactly Eq.(6), t_aklng into account t_he full interaction phe- _
nomena, including both multiscattering events and geometri-
pi cal coupling. The consequence is that our calculation fulfills

L _Reeikr—2mm)] the optical theorem for a compact mean fléguickly de-

Poi creasing at infinity, and that it describes properly the non-

2 * pertubative effect of wave front dislocation for a noncompact

=\/— Re{ e 1@m) X (—j)n mean flow. This is clearly not the case in the first Born ap-
mkr n=-e proximation or the standard ray-tracing methods.

x e' " fcog kr—nm/2—wl4)|. (42) IV. APPLICATION TO AEROACOUSTIC PROBLEMS

The PW method has been employed to solve the diffrac-
The constant8,, are chosen in such a way that the scatteredion of surface waves by a single vortg&7]. In this context,
wave ps—p; represents an outgoing wave, depending onlythe experimental vorticity distribution is very accurately de-
on e"'k". Using Eqgs.(40)—(42) and equating to O the coef- scribed by a vortex core in solid rotation, and an outer part of

ficient of e ¥ lead to the flow with a 1f decreasing orthoradial velocitgee Ap-
. pendix A). A very good agreement was found between ex-
B,=¢! (%= nmi2t i) (43)  perimental results and the PW method predictif®ig,47.
Formally, the vorticity is a step function of the distance to the
and the scattering amplitude can be recast into vortex center. In aeroacoustics, however, the solid rotation is

T - a very poor approximation of the effective velocity field in
_ N (O ) —imfar (2642 the inner part of the vortex32]. We thus show, in these
f(0)= ﬁn;w el (T me i gl M 1], examples, how to generalize the previous calculati@8$to
(44)  smooth(polynomia) vorticity distributions.

Another difficulty with the PW method is that the basic
Similar expressions were derived for the scattering of sounéquation(6) is only approximate, valid wheg>1 whereg
by nonzero-circulation mean flows by Fetter in the largeis the product of the acoustic wave number by a characteris-
wavelength limitA>L [21], and by Reinschk¢22]. How- tic length scale of the flow, typically the size of the vorticity
ever, these authors did not discuss the validity of the opticaflistribution. But the analysis does not give any numerical
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estimate of the minimum admissible value @f In order to  This second velocity profile is thus smooth, which is in prin-
get more information, we study the acoustic scattering by &iple a more favorable situation since the velocity gradients
vorticity distribution of zero circulation outside a radiug, . are lower.
In this case, the scattered wave may be calculated in the Born The analytical expressions of the velocity fields are cho-
approximation(see Appendix B which is valid if MB<1  sen to make the PW calculations easier. In order to facilitate
where M is the flow Mach numbef48,49. It is thus pos- the comparison, we impose the same flow dizeL,=b,
sible to consider low Mach number flows for which the Born and we determine the value of the parameigr(w; fixes
approximation is legitimate, and to compare the Born scatthe velocity scalgby the following physical requirement: we
tering amplitude with PW calculations. Then, we get numeri-require for the two flows the same maximal velocity, which
cal estimates of the value @ that gives good numerical means the same Mach number, and that this maximum ve-
agreement between the two approaches. locity occurs at the same radius-L*.

Straightforward algebra leads to

A. Range of validity of the partial-wave method a,=L*, (52)

To analyze the range of validity of our method, we want
to make comparisons with usual calculations in the first Born L*2) 12
approximation. To this end, we use two zero-circulation a2=b2( 1- 1-3— (53
flows, because Born approximation breaks down in the case b3
of flows with circulation[19,50,5]. Settingb; the vortex

size anda;=x;b; (x;<1), the first one is wf%- (54)
w3
Ui(r)=—r, Osr<ay, In the following, we compare the scattering amplitufiele-

fined by Eq.(26), computed using either the first Born ap-
proximation applied directly on Ed6) or the PW solution,
Eq. (31).

(l)lxi b%

Uy(r)= S o\
2(x1—1) . .

1. Partial-wave computations

Uy(r)=0, bi<r. With the first vortical flowU,, Egs.(15) and (16) are
Bessel equations, with solutions

FIND) =310 (VKISr), FIMe'(r)=J3,(VkKEr),

2 .
0, =L g <r=b,, (49) Gy (1) =Ng( Vi), (55)

with

Ql(r):wlv 0Sr$a1,

Ql(r)ZO, b1<r

0 n wlxl
. . . . .. kn:k_n(l)l/CO, kn—k__ y
The velocity field is continuous at=a;, but the vorticity Coxi—1
is not. This is corrected in the second case,
nk wx2L2
U= 221 r2 0eiea pP=n’-— L (56)
A= N ey T o xaml

In the region B<r<a;, we have kept the Bessel function of
positive index only, since it is the only solution of Bessel
., @;=r<b, (50  equation which is finite for =0.

If cok/ w4 is an integemng, kﬂ vanishes fon=ng. In this
special case, the inner solution can be found by assuming
F;”O(r)ocrp. This leads top=*n, and we only keep the
solutionp=ng to ensure a bounded solution at the origin:

2r?
Qo(N=wy| 1————— , O=r=a y i _
2( ) 2( ngg(z_xg)) 2 F',Po(r)—l‘no. (57)

Uy(r)

wzxg ( bg

=22 ([2_1
2(2—x3) \r?

Uo(r)=0, by<r.

If k} vanishes for soma=n;,, the intermediate solution can

2
Qy(r)=—w, X2 a,<r=<h, (51) also be foundxrP. This leads top= +n; and the interme-
2—x2 ' diate solution becomes, for this particular valuenpf
2
inter _ N inter ——
Q,(r)=0, by<r. Fnl (r)=rm, G”l (r)=r-" (58)
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For the second vortical flow,, Eq. (15) is still a Bessel - . ®
equation with solutions Q(Q)=2ﬂf0 Q(r)Jo(qr)rdr. (66)
inter _ 2 mter 1,2
Fo (1) =Jp(Vkkar), Gy =Np(vkkar) (59 Injecting the vorticity fields(49) and (51), we calculate the
. two Fourier transforms
with
2 2 2 - - 2
kﬁ:k.’. 2 (1)2X2 , p2:n2+ 2nk|—m (1)2X22. (60) Ql(q):wl q (alJl(qa1)+ ( 1
Co2—x5 Co 2-x5
Again, if k? vanishes for som@=n,, the intermediate so- X[byJy(qby) —a;J1(qay)] (67)
lution becomes

F:nnzter(r):rnz, GL”;er(r):rfnz (61)  and

We have chosen the vortical flow, in order that Eq(16)

- 2 +2
becomes a solvable equation. B¢5€] has given a change Qz(Q)=wzF( axJi(qay) — ———[2Jzx(qay)

of variable that links it to the Wittacker equatijsee Ref. (2=x3)9
[41], formula (9.220.1], and its solutions are expressed in 2
terms of confluent hypergeometric functiogs; (also called X2
. . 1 —gapds(qay)] | — ——[b2Jdi(qby)
degenerate hypergeometric functions; see Rét], Sec. —X5
9.21):
in [c(r/a)?]* ’ _ale(qaz)]) : (68)
Fol(r)y=—————exfd —c(r/a,)/2],;F,(1/2+ p—2\,1
2
9 and then compute the scattering amplitude with the help of
+2u,c(r/az)?) 62 elation (BY).
with 3. Estimation of the range of validity
5 Nk, In| ag Nk, For a mean flow of sizé,, B=2=L,,/\ is the control
C=a;\/ 2, 2 M= A= ac k?— ) parameter of the PW method. By construction, both flows
Coas(2—X5) c Co

correspond to the same value®f For each value o, and
each flow, we compute the scattering amplitude from the PW
PW . . .

As before, we have kept the only solution that is finiter at ”éethOd f77(6) and from the first Bomn approximation
-0. f=(6). Then, we Compute the scattering cross secttﬁgﬁt

If cok/w, is an integems, \ vanishes fon=n, and Eq. from Eq.(32) and o5, ,, from Eq.(27) and analyze the error
(16) becomes a Bessel equation. Nevertheless, the inner sBetween the two methods with the error parameter
lution can still be expressed in terms of confluent hypergeo-

metric functions, using the relatid®2] (— Z(Uspél\a{t_ O'Ecat) 69)
PwW B '

o'scat+ Uscat

(63

1 zZ\#

Jul2) F(p+1) 2) eXp(—i12)iFa (L2t 14 20, 22). For the Born approximation to be valid, the flow must satisfy
64  MmpB=27ML,/A<1. Thus, we choose\ =104 to en-
sure that this inequality is satisfied for large valueg3of

Figure 1 shows the evolution of the errgrfor the two
flows. Obviously,{ decreases a8 increases. Moreover, the
error values depend very slightly on the flow shape and on its
FL”(r)=J0(kr). (65) smoothness. From a more quantitative point of view, the PW

method remains valid foB=10 ({<10%). For very accu-
Then the scattering amplitud81), which requires the com- rateo computations, one must chooge=20 to ensuref
putation of the constants,, can be expressed in both cases<1%.
by injecting the particular function&5) or (59) and(62) in
the general syster{20). B. Examples

For the particular value=0, c=0 andx=0, and the so-
lution (62) are no longer valid. In this case, H46) becomes
a Bessel equation and the inner solution, finiteal, is

It is obvious that analytical solutions of Eq45) and(16)
are obtainable with few particular mean-flow velocity fields
From Appendix B, since we consider only axisymmetriconly. In the simplest case, analytical solutions can be ex-
vortical flows, we need to compute pressed in terms of Bessel functiondUf<r or Uec1/r (see

2. Born approximation
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o Velocity field U1
: o Velocity field U2
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w107
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FIG. 1. Error parametef [see definition in Eq(69)] vs B for
the two flowsU; [Eq. (48)] andU, [Eq. (50)].

Appendix A). This velocity field corresponds to a vortex with

a nonzero circulation and a solid rotation core. Such velocityferms (~Nmaxs

PHBICAL REVIEW E 67, 036604 (2003

We show in Appendix C

kp=0 for p<|n],
k=1 for p=|n|, (79)
Kp=D(y1, co i e bmoK) for p>|n|.

The analytical expression of the functidnis related to the
mean-flow structure. The complete expression of #fale-
pends on the mean-flow structuigd) and can be obtained,
for a givenU, by identifying order by order inr(L,,) terms
of Eq. (16). We then get a recurrence relation between the
Kn .

pAs Ln=L;, b,=0 andc,=0. Then, using Eq420), we
can express the sound wave from E@&l) and (23).

1. Number of terms in series

For computational reasons, we realize the partial-wave
summation on a finite number of terms, namely,2,+ 1
<N<ng,). The series in Eqs(9) and (74)

fields were obtained experimentally in water, to study theare simply convergent, so that the larggrandkr are, the

interaction of the vortex with surface wavg37]. In aeroa-

biggern,.x must be.

coustics, experimental vortices have smooth velocity profiles The value ofnpm,, has been discussed in scattering prob-
[32,33 and the solid core vortex is a very poor approxima-lems of electromagnetic waves by spherical conducting par-
tion. In order to get closer to the experimental situation, welicles (Mie scattering (see Ref[53], Sec. 13.5 These prob-

study polynomial velocity profiles:

imax i
u(n=2, y.( ) , r=<Lp, (70
u(r)= T r=L,, (71
I" being the circulation of the mean flow,
imax
I=2mLly> 7, (72)
=1

The mean-flow vorticity() confined inside the circle
=L, has also a polynomial form

i
<

=

2 imax
RN Cor=L,. (73
i=2

B L(i+2) r
"L, Ln \L,

Then, choosing the;, we can modelize a scattering prob-

lem by an axisymmetric vortex, including zero or nonzero

circulation.
The outer solution remains the same, Etd), whereas
the inner solution17) is expanded in series

(74

-2l

lems, involving summations of spherical Bessel functions,
are similar to our aeroacoustic one. From the analysis of the
convergence behavior of the series and numerical computa-
tions of the series terms, Wiscomp@4| suggested a crite-
rion for N, ay:

Nmax= X+ 4x3+ 2, (76)
where in our casex= g for scattering amplitude computa-
tions[e.g., Eq.(31)] andx=max(B,kr) for sound field com-
putations/e.g., Eq.(23)]. From our numerical computations,
the above choice of,,,,4 leads to a very good estimate of the
sound quantities.

Also for computational reasons, we will dengig, ., the
number of terms in the series expansi@d) (for each fixed
moden, |n|<p=<|n|+pmna. Of course, the larges and the
polynomials’ order(70) are, the larger the number of terms
that should be kept in the seri€s4). We were not able to
find a criterion analogous to E({6) to quantifyp,.x. From
our computations with largen,,.x, we find that ppayx
= 2N,ax WOrks fine.

2. A zero-circulation vortical flow

We consider in this section the scattering by a vortical
flow with no circulation. This type of flow without circula-
tion has a great theoretical interest: it is possible to perform
the analysis with usual sound scattering methods because no
spurious divergencies appear in the scattered quantities
[19,20. Moreover, this type of mean flow has a great impor-
tance in experimental situations such as vornman street
[55—-57 or normal modes of surface wavps7].
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% —(1;20 —-60 8 60 120

60
FIG. 4. Scattering amplitudd$|, resulting from the interaction

of a plane sound wavex(L* =2.5) with the mean flowJ, [Eq.

(50)] with M=0.1, with respect to the scattering angldin de-

grees. *, partial-wave computations; o, direct numerical simula-
tion; —, first Born approximation.

FIG. 2. Scattering amplitudg$|, resulting from the interaction
of a plane sound wavex(L* =0.5) with the mean flowJ, [Eq.
(50)] with M=0.1, with respect to the scattering angle(in de-
grees, partial-wave computations; o, direct numerical simulation;
—, first Born approximation.

We analyze the scattered sound wave from the zergdS t0 Study the interaction for a large rangexdt” ratios,
circulation mean flow(50). From Egs.(21)—(23), we can Whe_reL* is the vortex core radiufocation of the velocity
compute the total sound fields, its scattered pambeey, = MmaXimum. . .
and the scattering amplitud¢ 6). We can then compare the We present in Figs. 2—5 the scattering amP““ﬁ‘ﬂ‘” th*e
results from the PW method with results from the first Born™€a" flow (500 (M=0.1, largest velocity for L
approximation19]. As said before, the Born approximation :0'91 m), computed from the three methods, for different
is valid if the flow satisfies\8= M2mL, /A<1, whereas N/L* ratios. The agreement is good _between the DNS and
the PW method require8>1. We also use a direct numeri- one of the two theoretical methods, vv_|th01_Jt any free param-
cal simulation(DNS) of the sound—mean-flow interaction eters. As expected, the Born approximation falls down for

[58,59 to analyze the scattering behavior. This DNS allowsML* =25 (MB=0.5), whereas the PW computations are
valid for N\/L*<1 (B=12).

ML =1

0.02
0.015
= 001
0.005
b .0 TP ; ; ; ; '
-60 90 —?80 -120 -60 8 60 120 180
FIG. 3. Scattering amplitudg$|, resulting from the interaction FIG. 5. Scattering amplitudd$|, resulting from the interaction

of a plane sound wave\{L* = 1) with the mean flowJ, [Eq. (50)] of a plane sound wave\(L* =5) with the mean flowJ, [Eq. (50)]
with M=0.1, with respect to the scattering angléin degrees *, with M=0.1, with respect to the scattering angléin degrees *,
partial-wave computations; o, direct numerical simulatien;first partial-wave computations; o, direct numerical simulatien;first
Born approximation. Born approximation.
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FIG. 6. Sound field resulting from the interaction of an incident plane monochromatic soundprapagating from the left to the right
of the domain\/L* =1) with the mean flowJ, [Eq. (50)], M=0.1. B=12. Left-upper, sound wavgs from the partial-wave computa-
tions; right-upper, sound wavgs from the direct numerical simulation. Left-lower, scattered sound wayg, from the partial-wave
computations; right-lower, scattered sound wavg,; from the direct numerical simulation. Circles locate the position of the two opposite
sign vorticity domains. Units are in meters on each axis.

We have also computed the total sound fipldand its 3. Afinite circulation vortical flow

scattered pai60] psca With the PW method and the DNS. s type of flow was extensively studied in experimental
We use a square domain of sizel20<20L*. The fluid sjtyations with surface waves and sound waves. A solid ro-
parameters are those of air under normal conditions. Theation core well modelizes some experimental configurations
incident plane wave propagates from the left to the right 031,37 but a more general velocity profile is needed to take
the domain and we take=2.63x10 > m*kg '~2.6  into account general experimental set{i§2,33. These kind
X 10 °p,; to ensure linear sound waves. Results are preef vortices have also a theoretical importance: they create a
sented in Fig. 6 foln/L*=1 (B8=12) and on Fig. 7 for dislocation of the wave front, and it is possible to investigate
NL*=1/2 (B=25) where the PW method is valid. The in detail the phase-shift process and to perform in a quanti-
agreement is also rather good between the two method&ative way the Berry’'s analog}83,34,3§.
without any free parameters. The simplest polynomial expansigi@0), which gives a

In this range of wavelengths, the scattering process i§ontinuous vorticity, decreasing to 0 with a zero slope at
more efficient as the wavelength decreases. Moreover, thgLm. is Us, with
wave front perturbation, present just after the sound-vortex

crossing, decreases as the sound wave goes away from the w3l 3r2 43

vortex core. This observation is consistent with the physical Us(r)= 2 ( - 21 2 +5|_3 ) ' m
situation: as no topological default is present, this perturba- m m

tion disappears at large distances from the vortex, and is not (77

to be confused with the real dislocation observed when the

u (r)=—3 r=_L
vortical flow has a finite circulation. 3 2mr’ -mm
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FIG. 7. Sound field resulting from the interaction of an incident plane monochromatic soundprapagating from the left to the right
of the domain)\/L* =0.5) with the mean flowJ, [Eq. (50)], M=0.1. 8=25. Left-upper, sound wave; from partial-wave computations;
right-upper, sound wavpgg from direct numerical simulation. Left-lower,xs scattered sound wayg from the partial-wave computations;
right-lower, scattered sound wayg.,; from the direct numerical simulation. Circles locate the position of the two opposite sign vorticity
domains. Units are in meters on each axis.

under normal conditions, and we toplky=2.6X 10 °p; to
ensure linear sound waves. Again the agreement between our
PW method and the DNS is rather satisfact@fig. 8).

For these choices of/L* ratios, the scattering is more
efficient as the wavelength decreases. Moreover, we can ob-
serve a dislocation after the sound-vortex interaction, which
seems to be of constant amplitu@mpare to the zero cir-
culation case shown in Figs. 6 ang This dislocation, with
amplitude and orientation depending on the parameter

This velocity field is a solution of the ideal fluid equations a—that is the intensity of the mean flow and the orientation
and is smooth enough to mimic experimental profiles. Theof the vortex rotation with regard to the incident wave direc-
detailed calculations of the inner solutioi4) are given in  tion of propagation—is the signature of the Aharonov-Bohm
Appendix C. effect. These results are very similar to the results of Vivanco

We present results from the interaction of a plane sounet al.[37] computed for surface waves scattered by a vortex
wave with the mean flow77) (M=3.9x10 2, largest ve- in solid rotation. This is obvious, since the dislocation de-
locity for L*=0.01 m) for A/L*=1 (B8=9.8, Fig. §, pends on the vortex circulation only, which quantifies the
NL*=3/4 (B=13.1, Fig. 9, left side and A/L*=0.625 topological defect in the velocity field, and not on the core
(B=15.8, Fig. 9, right side Computations were performed structure.
with a domain of size 0.4 0.4 m (=26L,,) and the inci- Another prominent feature of the interaction of a sound
dent sound wave propagates from the left to the right of thevave and a vortex with circulation is the dissymmetry of the
domain. In each case, the fluid parameters are those of adicattered wavécompare Figs. 6 and 7 with Figs. 8 and B

Uj is maximum atr=L*=0.64_,,. The circulation isl'5
=37 w3 Lﬁqllo, ensuring continuity of the velocity at
=L.,. The vorticity Q25 reads

N=w + s r< s
3 3 |2 L3 g
(;8)
3(r) 1

r=L.
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FIG. 8. Sound wave resulting from the interaction of an incident plane monochromatic sound yperepagating from the left to the
right of the domain\/L*=1) with the mean flowU; [Eq. (77)], M=0.039. 3=9.8. Left, partial-wave computations; right, direct
numerical simulation. Circle locates the position of the vortex ¢oveating counterclockwige Units are in meters on each axis.

is crucial, in order to exhibit this property that is observedconstant and the sound amplitude is equal to 1. It means that

experimentallyf 37,47, to calculate the sound field inside the scattering effects are very small in these regions. The analy-

vortex core. sis of the amplitude behavior in these regions does not give
Following previous workg28,31,33,34,3] we want to informations about the sound wave propagation through the

emphasize here the importance of fluid dynamics experivortex flow. Nevertheless, the sound-vortex interaction can

ments (acoustic or surface wavedor the study of the be detected by measuring the phase julnp from one side

Aharonov-Bohm effect: we are able to analyze both the amto the other. Following Ref[34], this phase jump can be

plitude and phase of the way88]. The PW computations expressed as

give access to the full structure of the complex sound field

[see Eqs(21)—(23)]. Thus, writing 24T

Ap=—. 80
ps=|psle 2 "e'?, (79 PN 0
we can easily extract the amplituie) and the phase shift  Plotting A ¢ with respect to I gives informations about the
of the wave with respect to the incident wave. flow: we can get the flow circulatiof from the curve slope
Figure 10 shows cross sections of the amplitiyel¢ for  (Fig. 12. Practically, from the cross sections of the phase, it
x=0.19 m for different\/L* ratios. We also present in Fig. is not easy to definé ¢ because interference patterns be-
11 cross sections of the phase shiftfor x=0.19 m for  tween the incident wave, the dislocated wave, and the scat-
different N\/L* ratios. Far from they=0 plane, the sound tered wave are superimposed on the dislocation pattern pro-
wave is undisturbed by the mean flow: the phase is almosiucing the phase jump. We decided to defineé between

—5 -5

B ¥
0y T ¢

FIG. 9. Sound wave resulting from the interaction of an incident plane monochromatic sound ypeepagating from the left to the
right of the domain with the mean flowU, [Eq. (77)], M=0.039. Partial-wave computations with left/L* =3/4, f=13.1; right,
M L*=0.625, 3=15.8. Circle locates the position of the vortex comatating counterclockwige Units are in meters on each axis.
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FIG. 10. Cross sections, for=0.19 m, of the amplitudépg|, 7'1:|G- 12. Phase jump ¢ (in degreep with respect to I (in
for different\/L* ratios. m=).

. _ _also gives a better description than Born approximation be-
the minimum and the maximum values of the phase shiftause we are not restricted to the scattered part of the wave
(see Fig. 1], which is obviously an overestimate. In so do- (the far field, and because vortical flows with finite circula-
ing, we getFZlZG n‘? Sﬁl, to be ComparEd with the chosen tion are amenable to our ana|ysis_
value from the mean-flow77) properties (M=3.9x10"?, We analyzed in detail the range of validity of our method:
largest velocity forL*=0.01m): I'™=1.16 nf s™*. The  the method is valid for (2L/\)=12—15. Moreover, we
above choice for the phase jump amplitude gives a goodhowed that in this short wavelength limit, the partial wave

value of the vortical-flow circulation. method preserves the acoustical energy conservation. We
also gave some examples of sound scattering by vortical
V. CONCLUSION flows and we analyzed the behavior of the sound fields. We

extend previous calculations to the case of smooth vorticity

We have described a semianalytical method to analyz@rofiles that are essential to take into account actual experi-
sound-vortical-flow-interactions in two-dimensional casesmental aeroacoustics problems.

This method is based on a partial-wave expans&mnangu- Although approximate, our method is essentially nonper-
lar Fourier transformof a modified wave equation and is turbative and allows a satisfactory description of wave front
valid in the short wavelength limit for small Mach number djsjocation by a finite circulation vortex, which corresponds
flows. It is more powerful than ray-tracing methods becauseo a topologically singular velocity field. Zero-circulation

it gives, without extra computations, the sound wave ampliyortices are not topological defects, and the wave front per-
tude and phase in the whole interaction domain, and becausgrbation that appears near the vortex core decreases rapidly
it is less restrictive on the smallness of the wavelength. Iyith dicreasing distance.

Those sound—mean-flow interaction problems are for-
mally close to quantum scattering problems. The most im-
portant change is that sound waves always penetrate into the
vortical flow. A nontrivial physical consequence is the great
dissymmetry of the scattering pattern with finite circulation
vortices. A large number of papers in quantum mechanics
deal with scattering by various potentials, but only a few of
them take into account the internal structure of the scatterers.

A generalization of our method to more complicated flows
(e.g., involving more than one vortex, three-dimensional
problems seems to be an hard task and remains a open prob-
lem in order to analyze multiple scattering events in these

i flows. One way of solving the problem of two vortices could
nA I be to introduce elliptic coordinates and Mathieu functions
: : : e R N L [61].
19, 015 01 005 0 005 01 015 02
y [m] ACKNOWLEDGMENTS
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FIG. 11. Cross sections, for=0.19 m, of the phase shié (in We are grateful to S. Fauve and F. Lund for helpful dis-
degreey for different\/L* ratios. cussions. R.B. also thanks A. Folacci for fruitful suggestions.
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CONICYT. diverges for a nonzero-circulation mean flow. This is a well-
known behavior in the Born approximatidr30,46. This
APPENDIX A: SOUND SCATTERING BY A SOLID traces back to the fact that the physical effect of a nonzero
ROTATION VORTEX circulation is the dislocation of the incident wave front. In

) . the forward direction, the incident wave undergoes a modi-
Let us consider the vortical flow produced by a vortexsication of the same amplitude as itself. This is a nonpertur-

with a core in solid rotation: bative effect, inaccessible to a perturbative approach such as
_ the Born expansion.
U(r)=wor/2, 1<Lm, (A1) For axisymmetric flows in two dimensions, takin@z)
as the symmetry axi€) =Q(r)z in cylindrical coordinates
U(r)= 2 r=Lp, and the Fourier transforrtB2) reduces to
with T'= 7w, L3, in order to ensure continuity of the veloc- Q(a)zzwfwg(r) Jo(gr)rdr. (B3)
ity. This vortical flow was considered by Coste and co- 0

workers in surface wave scattering by vortex flo\28,37]
and also by Rouxetal. [31] to analyze the acoustical APPENDIX C: COMPUTATION OF THE INNER
Aharonov-Bohm e_ffec_t. _ _ SOLUTION SERIES
The outer solution is given by E§14) whereas the inner
solution (17) can be expressed in terms of the Bessel func- We must solve Eq(16),

tion J: i -
ing .y _ o 2n k max r n
Flnn(r)_‘-]|n\(knr) (AZ) p;-l—Tn-i- kz—ﬁ 2 ‘yi(L—) - pn:O. (Cl)
. ol i=1 m r
with
K —k— Nwo A3 For each value of, we introduce the indegy=0 of the first
N 2¢ (A3 honzero term of Eq(74):
We have kept the only solution that is finiterat 0. ” S TP
If 2cok/ wg is an integen,, k, vanishes fon=n,. In this Pn= :Z Kpl - (C2
special case, the inner solution can be found by assuming P=Po m
Fy(r)ecrP. This leads top==n, and we choose the solu- |njecting this in Eq.(C1), we then determine the constants
tion p=ng to get a bounded solution at the origin: KB with the requirement that the coefficient of each power of
EiN(r)=rno. A4 r/Ly, be zero. _ _ _
”O(r) ' (A4) Whenr—0, the leading order term ig L) 2, with

AsL;=L,, b,=0 andc,=0. The complete solution can be the coefficient p5—n?)«p /L. We thus get the general re-
achieved by solving the syste(B0). sult
kp, =0 for po#|n|
APPENDIX B: BORN APPROXIMATION 0
Starting from the basic equatiori8) and (4) describing  Of
the interaction of a sound waysound pulsation Zv) with "B #0 for po=|n| (C3)
a two-dimensional stationary mean flow, one can derive, in 0

the Born approximation, a formal expression for the scatrn,s for a given mode
1 n:

the series expansion startspat
tered amplitudg26) [19]: P H

=po=|n|. We take the positive value qf, in order to get a

1 > finite acoustical field at=0. In this general calculation, we

f(8)= =——~\/ —cog ) cot g/z)ﬁz(ER_Ei) (B1) recover the asymptotic behavior near the origin of the ana-
2¢q Y Co lytical solutions(55), (62), and(A2). In this respect, the ve-

with k;=2mvo/cy1 the wave vector of the incident plane locity fields (48), (50), and(A1) are only special cases of the
polynomial ones considered in this appendix.

wave thatA propagates in direction of the unit vectorkg The coefficients;cg for p>|n| are then calculated by re-
:2’7TV/C0 R is the wave vector in the direction of observa- currence. The genera' expression' for the Ve|ocity f(é@,

tion R, and is too cumbersome and can be expressed as
~ - 1 2 s it _
Q(q)=—z(277) fﬂ(r)e"q'rdzr (B2) kp=0 for p<|n],
Inl — —
is the spatial Fourier transform of the vorticity field. This wy=1for p=|n| (C4
expression allows to use sound as a probe of turbulent flows " LK i -
[20,62,63. kp=P(y1, ... % LmK) for p>|n|.
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The analytical expression of the functidn depends on the whereas the general term, fpe>5, is given by
mean-flow structure.

We will now focus on the particular cag@?). A straight-
forward calculation gives the recurrence relations for the co-

- . 2|n|+ nk
eff|C|ents:<B. The particular cases are M n (kz— s

Co )Kn|+p_2

L2 Kin|+p
m
kp=0 (p<|n),
P | | nk(,l)g 3 n 4 n
K #0, + co | 2%Inl+p—4a7 5 Kinl+p-5 =0. (Co
K +1=0, . . . . o
Obviously, all x, are proportional tox|, , which is not
4(|n|+1) Nkas specified in this calculation. According to the general solu-
B — K|nn+2+(k2_ )K|nn=0 (C5  tion (17), we write k[ =1, with the proportionnality con-
L stant now denoted bg,, .
n 0 Even in this simple case, we are unable to get an explicit
Kin|+3= Y,

expression for the functiod® of Eq. (75). However, the sys-
tem (C5) with (C6), together with the symbolic computation

8(In[+2) noo4 k2 nkeog| . 3 nkog -0 capabilities of MATHEMATICA are sufficient to calculate,
Kn|+4 Kn|+2 Kin| '

L2 * 2 cq defined in Eq(C2) up to any desirable order. In the particu-
lar cases of the velocity potential48), (50), and(Al), it is
5(2|n|+5) 4 nkos a straightforward exercise to verify that E@5) and (C6)
—2K|“n‘+5—§ —— kn =0, give the well-known series expansions of the analytic solu-
Lin Co tions (55), (62), and(A2).
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