C. Murcray, J. Lewinger, and W. Gauderman, Gene-Environment Interaction in Genome-Wide Association Studies, American Journal of Epidemiology, vol.169, issue.2, pp.219-226, 2009.
DOI : 10.1093/aje/kwn353

N. Rothman, M. Garcia-closas, and N. Chatterjee, A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci, Nature Genetics, vol.155, issue.11, pp.978-984, 2010.
DOI : 10.1534/genetics.103.021584

T. Hamza, H. Chen, and E. Hill-burns, Genome-wide geneenvironment study identifies glutamate receptor gene grin2a as a parkinson's disease modifier gene via interaction with coffee, ): e1002237. PMid:21876681 http, 2011.

M. Garcia-closas, K. Jacobs, and P. Kraft, Analysis of epidemiologic studies of genetic effects and gene-environment interactions, IARC scientific publications, vol.163, issue.163, pp.281-301, 2010.

W. Astle and D. Balding, Population Structure and Cryptic Relatedness in Genetic Association Studies, Statistical Science, vol.24, issue.4, pp.451-47109, 2009.
DOI : 10.1214/09-STS307

S. Purcell, N. B. Todd-brown, and K. , PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses, The American Journal of Human Genetics, vol.81, issue.3, pp.559-575, 2007.
DOI : 10.1086/519795

C. Lippert, J. Listgarten, and Y. Liu, FaST linear mixed models for genome-wide association studies, Nature Methods, vol.447, issue.10, pp.833-835, 2011.
DOI : 10.1186/1471-2156-6-S1-S2

B. Goldstein, A. Hubbard, and A. Cutler, An application of Random Forests to a genome-wide association dataset: Methodolog- Journal of Epidemiological Research, 2016.

C. Spencer, Z. Su, and P. Donnelly, Designing Genome-Wide Association Studies: Sample Size, Power, Imputation, and the Choice of Genotyping Chip, PLoS Genetics, vol.165, issue.5, 2009.
DOI : 10.1371/journal.pgen.1000477.s009

V. Perduca, C. Sinoquet, and R. Mourad, Alternative Methods for H1 Simulations in Genome-Wide Association Studies, Human Heredity, vol.73, issue.2, pp.95-104, 2012.
DOI : 10.1159/000336194

URL : https://hal.archives-ouvertes.fr/hal-00915530

G. Thorisson, A. Smith, and L. Krishnan, The International HapMap Project Web site, Genome Research, vol.15, issue.11, pp.1592-1593, 2005.
DOI : 10.1101/gr.4413105

R. Gibbs, J. Belmont, and P. Hardenbol, The international hapmap project, Nature, vol.426, issue.6968, pp.789-796, 2003.

R. Christopoulou and D. Lillard, The role of culture in smoking behavior: evidence from british immigrants in australia, south africa, and the us, 2011.

Y. Tsai, Z. Tsai, and C. Yang, Gender Differences in Smoking Behaviors in an Asian Population, Journal of Women's Health, vol.17, issue.6, pp.971-9780621, 2007.
DOI : 10.1089/jwh.2007.0621

A. Chiolero, D. Faeh, and F. Paccaud, Consequences of smoking for body weight, body fat distribution, and insulin resistance

R. Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2013.

Z. Su, J. Marchini, and P. Donnelly, HAPGEN2: simulation of multiple disease SNPs, Bioinformatics, vol.27, issue.16, pp.2304-2305, 2011.
DOI : 10.1093/bioinformatics/btr341

A. Liaw and M. Wiener, Classification and regression by randomforest. R News, pp.18-22, 2002.

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-321010933404324, 2001.
DOI : 10.1023/A:1010933404324

A. Boulesteix, S. Janitza, and J. Kruppa, Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.12, issue.suppl 1, pp.493-507, 2012.
DOI : 10.1002/widm.1072

H. Deng and G. Runger, Feature selection via regularized trees, The 2012 International Joint Conference on Neural Networks (IJCNN), 2012.

G. Hoffman, Correcting for Population Structure and Kinship Using the Linear Mixed Model: Theory and Extensions, PLoS ONE, vol.336, issue.Suppl 1, pp.75707-75717, 2013.
DOI : 10.1371/journal.pone.0075707.s011

X. Robin, N. Turck, and A. Hainard, Proc: an open-source package for r and s+ to analyze andcompare roc curves, BMC bioinformatics, vol.12, issue.1, pp.771471-2105, 2011.

C. Metz, Basic principles of ROC analysis, Seminars in nuclear medicine, pp.283-298, 1978.
DOI : 10.1016/S0001-2998(78)80014-2

P. Kraft, Y. Yen, and D. Stram, Exploiting Gene-Environment Interaction to Detect Genetic Associations, Human Heredity, vol.63, issue.2, pp.111-119, 2007.
DOI : 10.1159/000099183

J. Dai, B. Logsdon, and Y. Huang, Simultaneously Testing for Marginal Genetic Association and Gene-Environment Interaction, American Journal of Epidemiology, vol.176, issue.2, pp.164-173, 2012.
DOI : 10.1093/aje/kwr521

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499112