
HAL Id: hal-00947234
https://u-paris.hal.science/hal-00947234v3

Preprint submitted on 16 Dec 2014 (v3), last revised 24 Mar 2015 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Source-specific routing
Matthieu Boutier, Juliusz Chroboczek

To cite this version:

Matthieu Boutier, Juliusz Chroboczek. Source-specific routing. 2014. �hal-00947234v3�

https://u-paris.hal.science/hal-00947234v3
https://hal.archives-ouvertes.fr

Source-specific routing

Matthieu Boutier and Juliusz Chroboczek

Univ Paris Diderot, Laboratoire PPS
Sorbonne Paris Cité, PPS, UMR 7126, CNRS, F-75205 Paris, France

Abstract—Source-specific (or source address-dependent) rout-
ing is a routing technique where routing decisions depend
on both the source and the destination address of a packet.
Source-specific routing solves some difficult problems related
to multihoming, notably in edge networks, and is therefore
a useful addition to the multihoming toolbox. In this paper,
we describe the semantics of source-specific packet forwarding,
and describe our implementation of a source-specific extension
to the Babel routing protocol — to our knowledge, the first
complete implementation of source-specific routing —, including
a disambiguation algorithm that makes our implementation
work over widely available networking APIs. We further discuss
interoperability between ordinary next-hop and source-specific
routing. Our implementation has seen a moderate amount of
deployment, notably as a testbed for the IETF Homenet working
group.

I. INTRODUCTION

The routing paradigm deployed on the Global Internet is

next-hop routing. In next-hop routing, per-packet forwarding

decisions are performed by examining a packet’s destination

address only, and mapping it to a next-hop router. Next-hop

routing is a simple, well understood paradigm that works

satisfactorily in a large number of cases.

The use of next-hop routing restricts the flexibility of the

routing system in two ways. First, since a router only controls

the next hop, a route A·B ·C · · ·Z can only be selected by the

router A if its suffix B ·C · · ·Z has already been selected by

a neighbouring router B, which makes some forms of global

optimisation difficult or impossible. Other routing paradigms,

such as circuit switching, label switching and source routing,

do not have this limitation. (Source-routing, in particular, has

been proposed multiple times as a suitable routing paradigm

for the Global Internet [11], but has been forbidden due to

claimed security reasons [1]).

Second, the only decision criterion used by a router is the

destination address: two packets with the same destination are

always routed in the same manner. Yet, there are other data in

the IP header that can reasonably be used for making a routing

decision – the TOS octet, the IPv6 flow-id, and, of course, the

source address.

We call source-specific routing the modest extension of

classical next-hop routing where the forwarding decision is

allowed to take into account the source of a packet in addition

to its destination. Source-specific routing gives a modest

amount of control over routing to the sending host, which can

choose among potentially many routes by picking a specific

source address. The higher layers (transport or application)

are therefore able to choose a route using standard networking

APIs (collecting the host’s local addresses and binding a socket

to a specific address). Unlike source routing, however, source-

specific routing remains a hop-to-hop mechanism, and there-

fore leaves local forwarding decisions firmly in the control of

the routers.

II. APPLICATIONS

The main application of source-specific routing is the im-

plementation of multihoming.

A. Classical multihoming

A multihomed network is one that is connected to the

Internet through two or more physical links. This is usually

done in order to improve a network’s fault tolerance, but can

also be done in order to improve throughput or reduce cost.

Classically, multihoming is performed by assigning

Provider-Independent addresses to the multihomed network

and announcing them globally (in the Default-Free Zone

(DFZ)) over the routing protocol. The dynamic nature of the

routing protocol automatically provides for fault-tolerance;

improvements in throughput and reductions in cost can be

achieved by careful engineering of the routing protocol.

While classical multihoming works reasonably well in the

network core, it does not apply to the edge. In order to

perform classical multihoming, a network needs to be allocated

a “Provider-Independent” prefix that is reannounced by some

or all of a network’s peers. This setup is usually impossible

to achieve for home and small business networks.

Note that it is not in general possible to implement classical

multihoming using a single “Provider-Dependent” prefix. If a

network is connected to two providers A and B, a packet

with a source-address in an address range allocated to A will

usually not be accepted by B — B will treat it as a packet with

a spoofed source address and discard it [8]. What is more, A’s

prefix will not be reannounced by B, and hence destinations

in A’s prefix will not be reachable over the link to B.

There is some concern that classical multihoming, even

when restricted to the large networks of the core, is causing

uncontrolled growth of the “default-free routing table”. Since

we have only experimented with source-specific routing in

edge networks, we hold no opinion on the usefulness of

our techniques in the network core, and in particular on the

desirability of adding it to the BGP external routing protocol.

B. Multihoming with multiple source addresses

Since announcing the same Provider-Dependent (PD) prefix

to multiple ISPs is not always possible, it is a natural propo-

sition to announce multiple PD prefixes, one per provider. In

this approach, every host is assigned multiple addresses, one

per provider, and extra mechanisms are needed (i) to choose

a suitable source and destination address for each packet, and

(ii) to properly route each outgoing packet according to both its

source and its destination. In a sense, using multiple addresses

splits the difficult problem of multihoming into two simpler

problems that are handled at different layers of the network

stack.

1) Choosing addresses: The choice of source and desti-

nation addresses is typically left to the application layer. All

destination addresses are stored within the DNS (or explicitly

carried by the application protocol), and the sending host tries

them all, either in turn [7] or in parallel [12]; similarly, all

possible source addresses are tried in turn. Once a flow is

established, it is no longer possible to change the source and

destination addresses — from the user’s point of view, all TCP

connections are broken whenever a link outage forces a change

of address. Address selection can be implemented in the

operating system’s kernel and libraries, or by the application

itself, which is notably done by most modern web browsers.

A different approach is to use a transport layer that has

built-in support for multiple addresses and for dynamically

renegotiating the set of source and destination addresses.

One such transport layer is MPTCP [10]; we describe our

experience with MPTCP in Section VII-B.

2) Source-specific routing: As mentioned above, a provider

will discard packets with a source address that is in a different

provider’s prefix. In a network that is connected to multiple

providers, each outgoing packet must therefore be routed

through the link corresponding to its source address.

When the outgoing links are all connected to a single router,

it is feasible to set up traffic engineering rules to ensure that

this happens. There can be good reasons, however, why it

is desirable to connect each provider to a different router

(Fig. 1): avoiding a single point of failure, load balancing, or

simply that the various links use different link technologies

that are not available in a single piece of hardware. In a

home networking environment, the edge routers might be

provided by the different service providers, with no possibility

to consolidate their functionality in a single device.

ISP 1 ISP 2

Fig. 1. A network connected to two providers

With multiple edge routers, it is necessary that the routing

protocol itself be able to route according to source addresses.

We say that a routing protocol performs source-specific routing

when it is able to take both source and destination addresses

into account in its routing decisions.

C. Other applications

In addition to multihoming with multiple addresses, we are

aware of two problematic networking problems that source-

specific routing solves cleanly and elegantly.

1) Overlay networks: Tunnels and VPNs are commonly

used to establish a network-layer topology that is different

from the physical topology, notably for security reasons. In

many tunnel or VPN deployments, the end network uses its

native default route, and only routes some set of prefixes

through the tunnel or VPN.

In some deployments, however, the default route points at

the tunnel. If this is done naively, the network stack attempts to

route the encapsulated packets through the tunnel itself, which

causes the tunnel to break. Many workarounds are possible,

the simplest being to point a host route towards the tunnel

endpoint through the native interface.

Source-specific routing provides a clean solution to that

problem. The native default route is kept unchanged, while

a source-specific default route is installed through the tunnel.

The source-specific route being more specific than the native

default route, packets from the user network are routed through

the tunnel, while the encapsulated packets sourced at the edge

router follow the native, non-specific route.

2) Controlled anycast: Anycast is a technique by which a

single destination address is used to represent multiple network

endpoints. A packet destined to an anycast address is routed

to whichever endpoint is nearest to the source according to the

routing protocol’s metric. Anycast is useful for load balancing

— for example, the global DNS root servers are each multiple

physical servers, represented by a single anycast address.

For most applications of anycast, all of the endpoints are

identical and it does not matter which endpoint is accessed by

a given client. Some applications, however, require that a given

user population access a well-defined endpoint — for example,

in a Content Distribution Network (CDN), a provider might

not want to serve nodes that are not its customers. Ensuring

that this is the case by tweaking the routing protocol’s metric

(or “prepending” in BGP parlance) is fragile and error-prone.

Source-specific routing provides an elegant solution to this

problem. With source-specific routing, each instance of the

distributed server is announced using a source-specific route,

and will therefore only receive packets from a given network

prefix.

III. RELATED WORK

Multihoming is a difficult problem, and, unsurprisingly,

there are many techniques available to implement it, none of

which are fully general. In addition to classical network-layer

multihoming, already mentioned above, there are a number of

lower-layer techniques, the use of which is usually completely

transparent to the network layer; we are aware of Multi-Link

PPP, of Ethernet link aggregation (port trunking), of the use

of MPLS to provide multiple paths across a rich link layer,

as well as of proprietary techniques used by vendors of cable

modems. Since these techniques work at the link layer, they

are usually restricted to multihoming with a single provider.

All of these techniques are compatible, in the sense that they

can be used at the same time. We imagine a home network

where source-specific routing is used to access two providers,

each of which is classically multihomed, over links that consist

of multiple physical links combined at the link layer.

Source-specific routing itself is not a new idea [3], and

implementing it manually on a single router using traffic

engineering interfaces is a well-documented technique [9]. Im-

plementing source-specific routing within the routing protocol

has been proposed by Bagnulo et al. [2], but the techniques

used differ significantly from ours. First, the authors only

deal with the non-overlapping case — where the different

possible sources are disjoint —, which avoids the need for the

disambiguation algorithm which is one of our main concerns.

Second, they use a more general facility of an existing routing

protocol rather than explicitly implementing source-specific

routing. We find our more direct approach to be more intuitive,

and expect it to be more reliable, since it doesn’t require out-

of-band agreement on the meaning of the labels carried by the

routing protocol.

More generally, there are other applications of routing based

on more information from the packet header than just the

destination address. The traffic-engineering community has

been experimenting with routing based on the TOS octet of

the IPv4 header for many years, and the ability to do that is

part of the OSPFv2 protocol. TOS-based routing is somewhat

analoguous to source-specific routing, and many of the issues

raised are similar; both can be seen as particular cases of

“multi-dimensional routing”.

Equal Cost Multipath (ECMP) is somewhat different. A

router performing ECMP has multiple routes to the same

destination, and chooses among them according to the value

of a hash of the packet header. While ECMP does route on

multiple header fields, the choice of fields used to choose a

route in ECMP is a purely local matter, and does not need to

be carried by the routing protocol.

IV. SOURCE-SPECIFIC ROUTING

A. Next-hop routing tables

Ordinary next-hop routing consists in mapping a destination

address to a next-hop. Obviously, it is not practical to maintain

a mapping for each possible destination address, so the map-

ping table must be compressed in some manner. The standard

compressed data structure is the routing table (or Forwarding

Information Base, FIB), which ranges over prefixes, ranges of

addresses the size of which is a power of two. The routing

table can be constructed manually, but is usually populated by

a routing protocol.

Since prefixes can overlap, the routing table is an ambigu-

ous data structure: a packet’s destination address can match

multiple routing entries. This ambiguity is resolved by the so-

called longest-prefix rule: when multiple routing table entries

match a given destination address, the most specific matching

entry is the one that is used.

More precisely, a prefix is a pair P = p/plen , where p is

the first address in the prefix and plen is the prefix length.

An address d is in P when the first plen bits of d match the

first plen bits of p. We say that a prefix P = p/plen is more

specific than a prefix P ′ = p′/plen ′, written P ≤ P ′, when

the set of addresses in P is included in the set of addresses

in P ′. Clearly, P ≤ P ′ if and only if plen ≥ plen ′, and the

first plen ′ bits of p and p′ match.

The specificity ordering defined above has an important

property: given two prefixes P and P ′, they are either disjoint

(P ∩P ′ = ∅), or one is more specific than the other (P ≤ P ′

or P ′ ≤ P).

A routing table is a set of pairs (P,NH), where P is a

prefix and NH , the next hop, is a pair of an interface and a

(link-local) address; we further require that all the prefixes in

a routing table be distinct. Because of the particular structure

of prefixes, given an address d, either the set of prefixes in the

routing table containing d is empty, or it is a chain (a totally

ordered set); hence, there exists a most specific prefix P in

the routing table containing d. The longest-prefix rule specifies

that the next hop chosen for routing a packet with destination

d is the one corresponding to this most specific prefix, if any.

B. Source-specific routing tables

Source-specific routing is an extension to next-hop routing

where both the destination and the source of a packet can

be used to perform a routing decision. Source-specific routers

use a source-specific routing table, which is a set of triples

(D,S,NH), where D is a destination prefix, S a source

prefix, and NH is a next hop (note the ordering — destination

comes first). Such an entry matches a packet with destination

address d and source address s if d is in D and s is in S.

The specificity ordering generalises easily to pairs: a pair of

prefixes (D,S) is more specific than a pair (D′, S′) when

all pairs of addresses (d, s) which are in (D,S) are also

in (D′, S′); clearly, (D,S) ≤ (D′, S′) when D ≤ D′ and

S ≤ S′.

Unfortunately, the set of destination-source pairs of prefixes

equipped with the specificity ordering has not the same

structure than single prefixes: given a pair of addresses

(d, s), the set of pair of prefixes containing (d, s) might

not be a chain. Consider the pairs (2001:db8:1:/48, ::/0)
and (::/0, 2001:db8:2::/48). Clearly, these two pairs are not

disjoint (the pair of addresses (2001:db8:1::1, 2001:db8:2::1)
is matched by both), but neither is one more specific than

the other – the pair (2001:db8:1::1, 2001:db8:3::1) is matched

by the first but not the second, and, symmetrically, the pair

(2001:db8:4::1, 2001:db8:2::1) is matched by just the second.

From a practical point of view, this means that a source-

specific routing table can contain multiple most-specific en-

tries, and thus fail to unambiguously specify a forwarding

behaviour.

We say that a source-specific routing table is ambiguous

when it contains multiple non-disjoint most-specific entries.

Two entries r1 and r2 that are neither disjoint nor ordered

are said to be conflicting, written r1 # r2. If r1 = (d1, s1)
and r2 = (d2, s2), then this is equivalent to saying that either

d1 < d2 and s1 > s2 or d1 > d2 and s1 < s2. We call the

conflict zone of r1 and r2 the set of (d, s) that are matched

by both r1 and r2.

C. Forwarding behaviour

In the presence of an ambiguous routing table, there exist

packets that are matched by distinct most-specific entries. An

arbitrary choice must be made in order to decide how to route

such a packet.

Let us first remark that all routers in a single routing domain

must make a consistent choice — having different routers

follow different policies within conflict zones may lead to

persistent routing loops. Consider the topology in Fig. 2, with

two source-specific routes indexed by the pairs (D1, S1) and

(D2, S2) respectively, where packets matching (D1, S1) are

sent towards the left of the diagram, and packets matching

(D2, S2) are sent towards the right. If the two pairs are in

conflict, and router A chooses (D2, S2) while B chooses

(D1, S1), then a packet matching both pairs will loop between

A and B indefinitely.

A

(D1, S1)

(D2, S2)

B

(D1, S1)

(D2, S2)

Fig. 2. A routing loop due to incoherent orderings

It is therefore necessary to choose a disambiguation rule that

is uniform across the routing domain. There are two natural

choices: discriminating on the destination first, and comparing

sources if destinations are equal, or discriminating on source

first. More precisely, the destination-first ordering is defined

by:

(D,S) � (D′, S′) if D < D′ or D = D′ and S ≤ S′,

while the source-first ordering is defined by

(D,S) �s (D
′, S′) if S < S′ or S = S′ and D ≤ D′.

These orderings are isomorphic — hence, there is no theo-

retical argument that allows us to choose between them. An

engineering choice must be made, based on usefulness alone.

The current consensus, both within the IETF Homenet

group and outside it, appears to be that the destination-

first ordering is the more useful of the two. Consider the

(fairly realistic) topology in Fig. 3, where an edge router A
announces a source-specific route towards the Internet, and a

stub network N announces a (non-specific) route to itself. A

packet matching both routes must follow the route towards

N , since it is obviously the only route that can reach the

destination, which implies that A must use the destination-first

ordering. On the other hand, we know of no such compelling

examples of the usefulness of the source-first ordering.

In the following sections, we describe our experience with

source-specific routing using the destination-first ordering.

However, nothing in this article depends on the particular

ordering being used, and our techniques would apply just as

Internet A

(::/0,S)

(N, ::/0)
N

Fig. 3. A stub network behind a source-specific router

well to any structure that is a refinement of the specificity

ordering and that is a totaly ordered on route entries containing

a given address.

V. IMPLEMENTING SOURCE-SPECIFIC ROUTING

In the previous sections, we have described source-specific

routing and shown how all routers in a routing domain must

make the same choices with respect to ambiguous routing

tables, and have argued in favour of the destination-first se-

mantics. Whichever particular choice is made by an implemen-

tation of a routing protocol, however, must be implementable

in terms of the primitives made available by the lower layers

(the operating system kernel and the hardware).

In this section, we describe the two techniques that we have

used to implement a source-specific extension to the Babel

routing protocol [4]. We first describe the technique that we

use when running over a lower layer that natively implements

destination-first source-specific routing (Section V-A). We

then describe our so-called “disambiguation” algorithm (Sec-

tion V-B) which we use to implement destination-first source-

specific routing over any source-specific facility provided by

the lower layers, as long as it is compatible with the specificity

ordering — a very mild hypothesis that is satisfied by a number

of widely available implementations.

A. Native source-specific FIB

Ideally, we would like the lower layers of the system (the

OS kernel, the line cards, etc.) to implement destination-first

source-specific routing tables out of the box. Such native sup-

port for source-specific routing is preferable to the algorithm

described below, since no additional routes will need to be

installed. In practice, however, while many systems have a

facility for source-specific traffic engineering, this lower-layer

support often has a behaviour different from the one that we

require.

The Linux kernel, when compiled with the relevant options

(“ipv6-subtrees”), supports source-specific FIBs natively, al-

beit for IPv6 only. Unfortunately, this support is only func-

tional since Linux 3.11 (source-specific routes were treated as

unreachable in earlier versions), and only for IPv6 (for IPv4,

the “source” datum is silently ignored). We know of no other

TCP/IP stacks with native support for destination-first source-

specific routing — other techniques must be used on most

systems.

B. Disambiguation of a routing table

All versions of Linux, some versions of FreeBSD, and a

number of other networking stacks implement a facility to

manipulate multiple routing tables and to select a particular

one depending on the source address of a packet. Since the

table is selected before the destination address is examined,

this API implements the source-first behaviour, which is not

what we aim to implement.

In this section, we describe a disambiguation algorithm

that can be used to maintain a routing table that is free of

ambiguities, and will therefore yield the same behaviour as

long as the underlying forwarding mechanism implements

a behaviour that is compatible with the specificity ordering

(Section IV-B). All the forwarding mechanisms known to us

satisfy this very mild hypothesis.

Recall that a routing table is ambiguous if there exists a

packet that is matched by at least one entry in the table and

such that there is no most-specific entry among the matching

entries. A necessary and sufficient property for a routing table

to be non-ambiguous is that every conflict zone is equal to the

union of more specific route entries.

The algorithm that we propose maintains, for each conflict,

exactly one route entry that covers exactly the conflict zone.

While a more parsimonious solution would be possible in

some cases, it would greatly complicate the algorithm.

a) Weak completeness: We say that a routing table is

weakly complete if each conflict zone is covered by more

specific entries. More formally, T is weakly complete if

∀r1, r2 ∈ T, r1 ∩ r2 =
⋃
{r ∈ T | r ≤ r1 ∩ r2}.

Theorem 1. A routing table is non-ambiguous if and only if

it is weakly complete.

Proof: Let Uy
x =

⋃
{r ∈ T | r ≤ x∩y}. We need to show

that T is non-ambiguous iff ∀r1, r2 ∈ T, r1 ∩ r2 = Ur2
r1

.

(⇐) Suppose T is weakly complete, and consider two route

entries x, y ∈ T in conflict. By weak completeness, Uy
x =

x ∩ y, so for all addresses a ∈ x ∩ y, there exists a route

r ∈ Uy
x such that a ∈ Uy

x . Since r ∈ x ∩ y, we have r < x
and r < y, and r is more specific than x∩y. Since this is true

for all conflicts, the table is not ambiguous.

(⇒) Suppose T is non-ambiguous and not weakly complete.

Then there exist two entries x, y ∈ T in conflict such that

x ∩ y 6= Uy
x . Consider an address a ∈ x ∩ y r Uy

x , and an

entry r ∈ T matching a. Clearly, r) x ∩ y, and so either

r#x or r# y, or r > x and r > y. In all cases, r is not more

specific than both x and y, so there is no minimum for the

set of entries matching a. This contradicts the hypothesis, so

if T is not ambiguous, it is weakly complete.

Disambiguation with weak completeness is not convenient,

since it may require adding multiple route entries to solve

a single conflict, and the disambiguation routes added may

generate additional conflicts. Suppose for example that the FIB

first contains two entries r1 > r2, and we add r3 > r2 which

conflicts with r1 (see figure below). Since r2 < r3, there is

no conflict within r2, but we need disambiguation routes d1
and d2. The FIB is now weakly complete.

Suppose now that we add r4 < r3 in conflict both with r1
and the disambiguation route d2. We install a new disambigua-

tion entry d3. Note also that since r4 < r3, we need to use the

next-hop of r4 for the former region covered by d1: we need

to change the currently installed disambiguation route entry.

r1

r2
→

r1

r2 r3

d1
d2

→

r1

r2 r3

r4d1 d3

Some of this complexity can be avoided by requiring a

stronger notion of completeness.

b) Completeness: A routing table is (strongly) complete

if each conflict zone is covered by one route entry. More

formally, T is complete if ∀r1, r2 ∈ T, r1 ∩ r2 ∈ T . This

obviously implies weak-completeness, and therefore a com-

plete routing table is not ambiguous. Our algorithm maintains

the completeness of the routing table.

Theorem 2. Adding routes to achieve completeness does not

lead to another conflict.

Proof: Suppose that r1 = (d1, s1) and r2 = (d2, s2) are

two route entries in conflict, where d1 < d2 and s1 > s2.

Consider the disambiguation entry rsol = (d1, s2) which

disambiguates this conflict. Suppose now that rsol is in conflict

with another route entry r3 = (d3, s3). We have either d1 < d3
and s1 > s2 > s3, in which case r3 # r1 ; or d2 > d1 > d3
and s2 < s3, in which case r3 # r2. In either case, the

conflict existed beforehand, and must therefore already have

been resolved.

Take the previous example again. When adding r3, we add

one route entry to cover the area d1 (r1 ∩ r3). Since r2 is

more specific, the new route entry does not affect the routing

decision for addresses in r2. When adding r4, it is in conflict

with both r1 and the disambiguation route d1, but for the same

conflict zone r4∩r1. The disambiguation route inserted is thus

not an additional conflict.

r1

r2
→

r1

r2 r3

d1

→

r1

r2 r3d1

r4d2

c) Preliminaries: We write min(r1, r2) for the minimum

according to �. We define two auxiliary functions. The func-

tion min conflict(zone, r) (Algorithm 1) returns, if it exists,

the minimum route entry in conflict with r for the conflict zone

zone . The function conflict solution(zone) (Algorithm 2)

returns, if it exists, the minimum route entry participating in

a conflict for the zone zone .

We write nh(r) for the next hop of a route r.

We use three primitives for manipulating the routing table.

Let R = (D,S,NH) be a route entry, and NH ′ a nex-

thop. Then install(r,NH ′) adds the route entry (D,S,NH ′),
uninstall(r,NH ′) removes the route entry (D,S,NH ′),

1 Function min conflict(zone, r)

2 min ← ⊥
3 for all r1 ∈ T
4 s.t. r# r1 and r ∩ r1 = zone

5 min ← min(r1,min)

6 return min

Algorithm 1: search for mininum conflicting route

1 Function conflict solution(zone)

2 min ← ⊥
3 for all r1, r2 ∈ T
4 s.t. r1 # r2 and r1 ∩ r2 = zone and r1 ≺ r2
5 min ← min(r1,min)

6 return min

Algorithm 2: Search for conflict solution

and switch(r,NH ′,NH ′′) changes the FIB’s route entry

(D,S,NH ′) to (D,S,NH ′′). Calling switch(r,NH ′,NH ′′)
is equivalent to calling uninstall(r,NH ′) followed by

install(r,NH ′′).
d) Relevant conflicts: Consider a route entry r, and a set

E of routing entries in conflict with r for the same conflict

zone; all of these conflicts will have the same resolution.

Moreover, if the resolution was caused by a route in E, then

that was necessarily the more specific of the entries in E. Note

that the minimum exists because elements of E have either the

same destination, or the same source, and match at least one

address in r.

Given a route entry r, we define the equivalence ∼r by

r1∼rr2 ⇔ r1∩r = r2∩r, i.e. two route entries are equivalent

for ∼r if they have the same intersection with r. If two

equivalent route entries are in conflict with r, this means that

they have the same conflict zone.

Quotienting a set of routing entries in conflict with r by

this equivalence, and taking the minimum of each of the class

of equivalence gives us exactly the routes that we care about.

e) Adding a route entry (Algorithm 3): Installing a new

route entry in the FIB may make it ambiguous. For this

reason, we must install the most specific routing entries first.

In particular, we must install disambiguation entries (lines 2

to 9) before the route itself (lines 10 to 14).

Let r be the route to install, and C the set of route entries

in conflict with r, for which there is no natural solution, i.e.

C = {r′ ∈ T | r′ # r and r′ ∩ r 6∈ T} (line 3). We only

consider the relevant conflicts upon this set (line 4): C ′ =
{min(E) | E ∈ C/∼r

}.
For each route entry r1 ∈ C ′ (considering the most specific

first), we first search (line 5), if it exists, the minimum route

entry r2 such that r2 # r1 and r2 ∩ r1 = r ∩ r1. If r2 does

not exist, then there was no conflict for this zone before, and

we must add ((r1 ∩ r),NH) to the FIB (line 7). Otherwise, a

routing entry has been installed for this conflict, and we must

decide if the new route entry r is or not the new candidate,

which is true if it is more desirable (�) than both r2 and r1

(line 8). If it is the case, then the previous next-hop installed

was the one of r2: we replace ((r1∩r),NH 2) by ((r1∩r),NH)
(line 9).

Finally, we must search if there exists two route entries in

conflict for the zone of r (line 10). In that case, a disambigua-

tion route entry has been installed, so r must replace it (line

12). Otherwise, r can be added normally (line 14). We end

the procedure by adding r to our local RIB (line 15).

1 Function add route(r)

2 for all r1 ∈ T
3 s.t. r# r1 and r ∩ r1 6∈ T
4 and r1 = min conflict(r ∩ r1, r)
5 r2 ← min conflict(r ∩ r1, r1)
6 if r2 = ⊥
7 install(r ∩ r1, nh(min(r, r1)))

8 else if r ≺ r2 and r ≺ r1
9 switch(r ∩ r1, nh(r2), nh(r))

10 r1 ← conflict solution(r)
11 if r1 = ⊥
12 install(r, nh(r))

13 else

14 switch(r, nh(r1), nh(r))

15 T ← T ∪ {r}

Algorithm 3: Route addition

f) Removing a route entry (Algorithm 4): This time, we

must first remove the less specific route first to keep the routing

table unambiguous. Again, we write r for the route to be

removed. First, remove r from the RIB (line 2). As for the

addition, r may be solving a conflict, in which case we cannot

just remove it, but must first search for the entry covering that

conflict (line 3), and if it exists replace r’s next-hop (line 7).

Otherwise, we just remove r from the FIB (line 5).

We consider C ′ as previously defined (lines 9 and 10).

For each route entry r1 ∈ C ′ (considering the less specific

first), we first search, as we did for the adding process, for the

minimum route entry r2 such that r2 # r1 and r2∩r1 = r∩r1
(line 11). If r2 does not exist, we remove ((r1∩r),NH) from

the FIB (line 13). Otherwise, for the same reasons above, if

r is more desirable than both r1 and r2, then we replace in

the FIB the next-hop of r assigned for r ∩ r1 by the one of

r2 (line 15).

g) Changing a route entry (Algorithm 5): This is the

simplest case, since disambiguation routes must be maintained,

and changed only if the route that we want to change has been

selected for disambiguation. The order in which we change the

route entries does not matter. Let r the route entry to change

by rnew . Here, we choose to first replace r by rnew (line 2).

We consider C ′ as previously defined (lines 3 and 4). For

each route entry r1 ∈ C ′, we search for the minimum route

entry r2 such that r2 # r1 and r2∩r1 = r∩r1. If both r ≺ r1
and r2 is r (line 6), then we replace the next-hop NH of

the corresponding disambiguation route entry by the new one

1 Function delete route(r)

2 T ← T r {r}
3 r1 ← conflict solution(r)
4 if r1 = ⊥
5 uninstall(r, nh(r))

6 else

7 switch(r, nh(r), nh(r1))

8 for all r1 ∈ T
9 s.t. r# r1 and r ∩ r1 6∈ T

10 and r1 = min conflict(r ∩ r1, r)
11 r2 ← min conflict(r ∩ r1, r1)
12 if r2 = ⊥
13 uninstall(r ∩ r1, nh(min(r, r1)))

14 else if r ≺ r2 and r ≺ r1
15 switch(r ∩ r1, nh(r), nh(r2))

Algorithm 4: Route deletion

NH new (line 7).

1 Function change route(r, rnew)

2 switch(r, nh(r), nh(rnew))
3 for all r1 ∈ T
4 s.t. r# r1 and r ∩ r1 6∈ T
5 and r1 = min conflict(r ∩ r1, r)
6 and r ≺ r1 and r = min conflict(r ∩ r1, r1)
7 switch(r ∩ r1, nh(r), nh(rnew))

Algorithm 5: Route modification

C. External changes to the routing table

In the description above, we have asssumed that only

our algorithm ever needs to manipulate the routing table. In

practice, however, the routing table is also manipulated by

other agents — other routing protocols or human operators. In

principle, the same algorithm should be applied to externally

changed routes; however, this is not implemented yet.

VI. SOURCE-SPECIFIC BELLMAN-FORD

The distributed Bellman-Ford algorithm is the foundation of

a number of more or less widely deployed routing protocols,

such as the venerable RIP, EIGRP, Babel and, to a certain ex-

tent, BGP and the inter-area sub-protocol of OLSR. In order to

experiment with source-specific routing in a realistic manner,

we have implemented a source-specific variant of the Babel

routing protocol [6]; the exact details of the packet format of

our extension are described in [4]. Our implementation has

seen a moderate amount of deployment, most notably as a

testbed for the IETF Homenet working group [5].

The source-specific extension to Babel extends Babel’s

routing table to be indexed by destination-source pairs rather

than just destination prefixes. A new kind of update has been

defined, that is able to carry both a source and a destination

prefix. Since Babel’s loop avoidance mechanism makes use

of explicit requests, we have also created two new kinds of

source-specific requests that mirror the existing requests in the

unextended Babel protocol. Our implementation interoperates

with unextended Babel routers, and does not interfere with the

other existing extensions to the Babel protocol.

A. Interoperability

The Babel protocol has seen a moderate amount of de-

ployment in production networks, and is usually deployed

within cheap routers that can be difficult to update with a

source-specific version of the protocol. We have therefore paid

particular attention to the issue of interoperability between

routers running the source-specific and unextended protocols.

A non-specific update having only the destination prefix

(D) can be seen as a source-specific update for (D , ::/0).
Therefore, source-specific routers interpret non-specific up-

dates as source-specific updates with a ::/0 source prefix.

Conversely, source-specific routers never send updates of the

form (D , ::/0), and send a non-specific update instead.

A more difficult issue is how a non-specific router should

interpret a source-specific update. There are two possibilities:

the source can be discarded and the update treated as non-

specific, or the entire update can be discarded. The first of

these possibilities can cause persistent routing loops.

Consider two nodes A and B, with A source-specific an-

nouncing a route to (D ,S) (Fig. 4). When B receives the

announcement, it ignores the source information, installs and

announces it as D . This is reannounced to A, which treats it

as (D , ::/0). Packets destined to D but not sourced in S will

be forwarded by A to B, and by B to A.

A

(D ,S)

(D , ::/0)

B

(D , ::/0)

Fig. 4. Non-specific routers cannot accept specific routes

If non-source-specific nodes rejects source-specific updates,

but source-specific nodes accept non-source-specific updates

with ::/0 source, then source-specific nodes can communicate

entries of the form (D , ::/0) as (D), and are completely com-

patible with non-source-specific nodes. In this case, Bellman-

Ford will eventually converge to a loop-free configuration.

In general, discarding source-specific routes by non-specific

routers will cause routing blackholes. Intuitively, unless there

are enough non-specific routes in the network, non-specific

routers will suffer starvation, and discard packets for desti-

nations that are only announced by source-specific routers.

A simple yet sufficient condition for avoiding blackholes is to

build a connected source-specific backbone that includes all of

the edge routers, and announce a (non-specific) default route

towards the backbone.

B. Implementation details

There are two natural ways to encode source-specific up-

dates and requests within the framework of Babel’s extension

mechanism: by defining a new set of TLVs, or by adding a sub-

TLV to existing TLVs. We have defined a new set of TLVs,

since these will be ignored by existing implementations of

Babel; using a sub-TLV would cause just the sub-TLV to be

ignored, which, as we have seen above, could cause persistent

routing loops.

The standalone implementation of Babel has an extensive

framework for redistribution and filtering. We have extended

this framework to allow a redistribution filter to attach a source

to a redistributed route. While this can cause persistent routing

loops to occur, this is not unusual with redistribution.

VII. EXPERIMENTAL RESULTS

We have implemented both schemes described in Sec-

tions V-A and V-B within babeld, a Linux implementation

of the Babel routing protocol. This has allowed us to perform

a number of experiments which we describe in this section.

Our experimental network consists of a mesh network

consisting of a dozen OpenWRT routers and a single server

running Debian Linux. Two of the mesh routers have a wired

connection to the Internet, and are connected to the server

through VPNs (over IPv4). All of the routers run our modified

version of the Babel protocol.

IPv4 connectivity for the mesh is provided by the Debian

server, which acts as a NAT box. The IPv6 connectivity is

more interesting: there are two IPv6 prefixes, one of which is

a native prefix provided by our employer’s network, the other

one being a prefix specific to the server and routed through the

VPN. The network therefore has two source-specific default

IPv6 routes.

A. Routing table, and VPN connectivity

Figure 5 shows an excerpt of the routing tables of one of

the two wired routers. The modified babeld daemon has

allocated a non-default routing table, table 11, and inserted

routes (marked as proto 42) into both the default main

table and table 11. The former table contains non-specific

routes: the default route and the /20 subnet announced by

our local DHCP server, and host routes to individual mesh

nodes of our testbed. The encapsulated VPN packets are routed

through the default route.

Table 11 contains routes for locally originated packets,

sourced in 192.168.4.0/24. The only “real” route in this table

is the default route, which prevents the VPN from attempting

to “enter itself”. The other routes are disambiguation routes,

automatically generated by the algorithm described in Sec-

tion V-B. These entries are copies of those present in the main

routing table, and prevent locally generated packets destined

to local subnets from leaving through the native default route.

B. Multipath TCP

Multipath TCP [10] is an extension to TCP which multi-

plexes a single application-layer flow over multiple network

layer sub-flows, and attempts to use as many distinct routes

as possible, and to either carry traffic over the most efficient

one or to perform load balancing. An obvious application is

ip rule show

0: from all lookup local

101: from 192.168.4.0/24 lookup 11

32766: from all lookup main

32767: from all lookup default

ip route show

default via 172.23.47.254 dev eth1 proto static

172.23.32.0/20 dev eth1 proto kernel src 172.23.36.138

192.168.4.20 via 192.168.4.20 dev tun-ariane proto 42 onlink

192.168.4.30 via 192.168.4.30 dev wlan1 proto 42 onlink

[...]

ip route show table 11

default via 192.168.4.20 dev tun-ariane proto 42 onlink

192.168.4.20 via 192.168.4.20 dev tun-ariane proto 42 onlink

192.168.4.30 via 192.168.4.30 dev wlan1 proto 42 onlink

[...]

Fig. 5. IPv4 routing table on a router using a VPN

0 100 200 300 400 500 6000 100 200 300 400 500 600

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

eth0: 130.104.230.45 → 172.23.36.45

tun-ariane: 130.104.230.45 → 192.168.4.3

Time of experiment (s)

T
h

ro
u

g
h

p
u

t
(k

B
/s

)

Fig. 6. Download using MPTCP and traffic control

a mobile node (a telephone) with permanent connectivity to a

cellular network and intermittent WiFi connectivity: MPTCP

is able to use the cellular link when WiFi is not available,

and switch to WiFi when available without dropping already

established connections.

Multipath TCP and source-specific routing turn out to be a

surprisingly good match. MPTCP is able to use all of the

addresses of the local host, and to dynamically probe the

reliability and performance of packets sourced from each of

those.

We have performed two tests that both consist in download-

ing a 110 MB file over MPTCP from the MPTCP website.

In the first test (Figure 6), a desktop computer is directly

connected to the source-specifically routed wired network,

and is configured with two IPv4 addresses. The Linux tc

subsystem is used to limit each of the addresses to 100 kB/s

traffic; MPTCP is able to reliably download at 200 kB/s.

In the second test (Figure 7), a laptop’s WiFi interface is

configured with three addresses (one IPv4 and two IPv6).

MPTCP multiplexes the traffic across the three routes, and

balances their throughput dynamically.

VIII. CONCLUSION AND FURTHER WORK

Source-specific routing is a modest extension to next-hop

routing that keeps the forwarding decisions firmly within

control of the routers while allowing end hosts a moderate

0 20 40 60 80 1000 20 40 60 80 100

0
5
0
0

1
0
0
0

1
5
0
0

0
5
0
0

1
0
0
0

1
5
0
0

eth0: server 1 (v4) → host 1 (v4)

eth0: server 2 (v6) → host 2 (v6)

eth0: server 2 (v6) → host 3 (v6)

Time of experiment (s)

T
h

ro
u

g
h

p
u

t
(k

B
/s

)

Fig. 7. Download using MPTCP

and clearly defined amount of control over the choice of

routes. Since source-specific routing can cause ambiguous

routing tables, we have defined the behaviour that we believe

source-specific routers should have, and shown how combining

different behaviours in the same network can cause persistent

routing loops. Similar care must be taken when combining

non-specific with source-specific routers in the same network.

We have proposed two ways to implement source-specific rout-

ing, and obtained experimental results that show that source-

specific routing can be usefully exploited by the transport layer

protocol MPTCP. Our implementation is of production quality,

and has seen a modest amount of deployment, notably as a

testbed for the ideas of the IETF Homenet working group.

While we enjoy working with distance-vector protocols,

much of the networking community appears to have converged

on using the OSPF protocol for internal routing. OSPF is a

rich and complex protocol, and while many of our techniques

should apply without difficulty to it, actually implementing a

full source-specific variant of OSPF without sacrificing any of

its flexibility remains a challenging endeavour.

It was a pleasant surprise to discover that unmodified

MPTCP can use source-specific routes without any manual

configuration. However, we claim that source-specific routing

can also be exploited at the application layer without any

changes to the transport layer; we are currently working on

an extension to the Mosh [13] UDP-based remote shell that

is able to dynamically balance over multiple source-specific

routes.

Finally, we have only considered the applicability of source-

specific routing to edge networks, which tend to carry only a

moderate number of distinct routes. However, there is nothing

in principle that would prevent source-specific routing to be

applicable to BGP and to core networks, where it could

potentially mitigate the issue of routing table growth due to

classical multihoming. However, extending our results to core

networks, wich their large routing tables, will require careful

analysis of the complexity of our techniques, and a carefully

optimised implementation.

ACKNOWLEDGEMENTS

We are grateful to Benoı̂t Valiron for his help with the

presentation of the disambiguation algorithm.

REFERENCES

[1] J. Abley, P. Savola, and G. Neville-Neil. Deprecation of Type 0 Routing
Headers in IPv6. RFC 5095, December 2007.

[2] Marcelo Bagnulo, Alberto Garcı́a-Martı́nez, Juan Rodrı́guez, Arturo Az-
corra. The Case for Source Address Dependent Routing in Multihoming.
Quality of Service in the Emerging Networking Panorama. Lecture
Notes in Computer Science Volume 3266, 2004, pp. 237-246.

[3] F. Baker and P. Savola. Ingress Filtering for Multihomed Networks. RFC
3704 and BCP 84, March 2004.

[4] M. Boutier and J. Chroboczek. Source-Specific Routing in Babel.
Internet Draft draft-boutier-babel-source-speicific-00. Work in progress,
November 2014.

[5] T. Chown, Ed. IPv6 Home Networking Architecture Principles. RFC
7368. October 2014.

[6] J. Chroboczek. The Babel Routing Protocol. RFC 6126, April 2011.
[7] R. Draves. Default Address Selection for Internet Protocol version 6

(IPv6). RFC 3484, February 2003.
[8] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial

of Service Attacks which employ IP Source Address Spoofing. RFC
2827 and BCP 38, May 2000.

[9] Bert Hubert et al. Linux Advanced Routing and Traffic Control. Available
online at http://www.lartc.org/.

[10] Costin Raiciu, Christoph Paasch, Sébastien Barré, Alan Ford, Michio
Honda, Fabien Duchene, Olivier Bonaventure, and Mark Handley. How
Hard Can It Be? Designing and Implementing a Deployable Multipath
TCP. In USENIX Symposium of Networked Systems Design and Imple-

mentation (NSDI’12), San Jose (CA), 2012.
[11] Jerome H Saltzer, David P Reed, and David D Clark. Source routing

for campus-wide internet transport. In Proc. IFIP WG 6.4 International

Workshop on Local Networks, 1980.
[12] D. Wing and A. Yourchenko. Happy Eyeballs: Success with Dual-Stack

Hosts. RFC 6555, April 2012.
[13] Keith Winstein and Hari Balakrishnan. Mosh: An Interactive Remote

Shell for Mobile Clients. In USENIX Annual Technical Conference,
Boston, MA, June 2012.

