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A Characterization of those Automata
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Abstract. Antonenko and Russyev independently have shown that any
Mealy automaton with no cycles with exit—that is, where every cycle
in the underlying directed graph is a sink component—generates a fi-
nite (semi)group, regardless of the choice of the production functions.
Antonenko has proved that this constitutes a characterization in the
non-invertible case and asked for the invertible case, which is proved in
this paper.
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1 Introduction

The class of automata (semi)groups contains multiple interesting and
complicated (semi)groups with sometimes unusual features [4].

In the last decades, the classical decision problems have been investigated
for such (semi)groups. The word problem is solvable using standard min-
imization techniques, while the conjugacy problem is undecidable for au-
tomata groups [22]. Of special interest for our concern here, the finiteness
problem was proved to be undecidable for automata semigroups [9] and
remains open for automata groups despite several positive and promising
results [1,2,5,6,12-15, 19, 20].

The family of automata with no cycles with exit was investigated by An-
tonenko and by Russyev independently. Focused on the invertible case,
Russyev stated in [17] that any invertible Mealy automata with no cycles
with exit generates a finite group. Meanwhile, Antonenko showed in [2]
(see also [3]) the same result in the non-invertible case and proved the fol-
lowing maximality result: for any automaton with at least one cycle with
exit, it is possible to choose (highly non-invertible) production functions
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such that the semigroup generated by the induced Mealy automaton is
infinite.

In this paper, we fill the visible gap by extending the aforesaid maximality
result to the invertible case: for any automaton with at least one cycle
with exit, it is possible to choose invertible production functions such that
the group generated by the induced Mealy automaton is infinite.

The proof of this new result makes use of original arguments for the
current framework, whose common idea is to put a special emphasis on
the dual automaton, obtained by exchanging the roles of the stateset
and the alphabet. Thereby it continues to validate the general strategy
first suggested in the paper [1], then followed and continuously developed
in [12,13].

The new maximality result provides a precious milestone in the ongoing
work by De Felice and Nicaud (see [7] for a first paper) who propose to de-
sign random generators for finite groups based on those invertible Mealy
automata with no cycles with exit. Their aim is to simulate interesting
distributions that might offer a wide diversity of different finite groups by
trying to avoid the classical concentration phenomenon around a typical
object, namely symmetric or alternating groups [8, 11], which is signifi-
cant in already studied distributions. Once implemented, such generators
would be very useful to test the performance and robustness of algorithms
from computational group theory. They would also be of great use when
trying to check a conjecture, by testing it on various random inputs, since
exhaustive tests are impossible due to a combinatorial explosion.

The structure of the paper is the following. Basic notions on Mealy au-
tomata and automaton (semi)groups are presented in Section 2. In Sec-
tion 3, we introduce new tools and prove the main result.

2 Mealy Automata

This section contains material for the proofs: first classical definitions
and then considerations already made in [12] to maintain the paper self-
contained.

2.1 Automaton Groups and Semigroups

If one forgets initial and final states, a (finite, deterministic, and complete)
automaton A is a triple

(A,E,éz (51 : A%A)ZEZ) )



where the stateset A and the alphabet X are non-empty finite sets, and
where the 9; are functions called transition functions.
The transitions of such an automaton are

An automaton is reversible if all its transition functions are permutations
of the stateset. Note that in this case each state has exactly one incoming
transition labelled by each letter.

A Mealy automaton is a quadruple
(A’ 2’6 = (51 tA— A)iEZ,p = (pm PO Z)IGA) s

such that both (A, X,d) and (X, A, p) are automata. In other terms, a
Mealy automaton is a letter-to-letter transducer with the same input and
output alphabet. If A = (A, X,0) is an automaton and p = (p, : ¥ —
X)zea is a finite sequence of functions, we denote by (A, p) the Mealy
automaton (A, X, §, p) and we say that A is enriched with p. The graphical
representation of a Mealy automaton is standard, see Fig. 1.
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Fig. 1. An example of a Mealy automaton: the so-called adding machine.

The transitions of a Mealy automaton are
xmﬂx(x) .

A Mealy automaton M = (A, X, 0,p) is reversible if the automaton
(A, X, 0) is reversible and invertible if the functions p, are permutations of
the alphabet. In this latter case, its inverse is the Mealy automaton M ™!
with stateset A~! = {x71 2 € A} and set of transitions

x_li)y_l eM! = xi)y eM.

A Mealy automaton M is bireversible if both M and M~! are invertible
and reversible.

In a Mealy automaton M = (A, X, 4, p), the sets A and X' play dual roles.
So we may consider the dual (Mealy) automaton defined by

D(M) = (27A7p7 5) b



Fig. 2. The dual automaton of the Mealy automaton of Fig. 1.

see an example on Fig. 2. Obviously, a Mealy automaton is reversible if
and only if its dual is invertible.

Let M = (A, X, 9, p) be a Mealy automaton. We view M as an automaton
with an input and an output tape, thus defining mappings from input
words over X to output words over Y. Formally, for x € A, the map
Py 2 XF — X extending p, : X — X is defined by:

Vie X, Vs e X7, px(is) = px(i)péi(x)(s) .

By convention, the image of the empty word is itself. The mapping p, is
length-preserving and prefix-preserving. We say that p, is the production
function associated with z in M or, more briefly, if there is no ambiguity,
the production function of x. For u = z1---x, € A™ with n > 0, we set
pu X5 = X% pu = g, 0000 pay.

Denote dually by §; : A* — A* i € X the production functions associated
with the dual automaton 9(M). For s =4 - - -4, € X" with n > 0, we set
0g 1 A* = A% 0g = 0;, 0---00;,.

The semigroup of mappings from X* to X* generated by p,,z € A, is
called the semigroup generated by M and is denoted by (M) ;. When M
is invertible, its production functions are permutations on words of the
same length and thus we may consider the group of mappings from X*
to X* generated by p.,x € A; it is called the group generated by M and
is denoted by (M).

The automaton of Fig. 1 generates the semigroup N and the group Z. The
orbit of the word 0™ under the action of p,, is of size 2": it acts like a binary
addition until 1™ (considering the most significant bit on the right). In
fact the Mealy automaton of Fig. 1 is called the adding machine [10].

Remind some known facts on finiteness of the automaton (semi)group:

(F1) To prune a Mealy automaton by deleting its states which are not
reachable from a cycle (see the precise definition of a cycle in Sub-
section 3.1) does not change the finiteness or infiniteness of the
generated (semi)group.



(F2) An invertible Mealy automaton generates a finite group if and only
if it generates a finite semigroup [1, 21].

(F3) A Mealy automaton generates a finite semigroup if and only if so
does its dual [1, 16, 18].

(F4) An invertible-reversible but not bireversible Mealy automaton gen-
erates an infinite group [1].

Whenever the alphabet is unary, the generated group is trivial and there
is nothing to say. Throughout this paper, the alphabet has at least
two elements.

2.2 On the Powers of a Mealy Automaton and its Connected
Components

Let M = (A, X,6,p) be a Mealy automaton.

Considering the underlying graph of M, it makes sense to look at its
connected components. If M is reversible, its connected components are
always strongly connected (its transition functions are permutations of a
finite set).

A convenient and natural operation is to raise M to the power n, for
some n > 0: its n-th power is the Mealy automaton

M= (A", 5,5+ A" = Aies, (pu: £ — Duean ) -

If M is reversible, so is each of its powers.

If M is reversible, we can be more precise on the behavior of the connected
components of its powers. As highlighted in [12], they have a very peculiar
form: if C is a connected component of M" for some n and u is a state of C,
we obtain a connected component of M"*! by choosing a state » € A
and building the connected component of uz, denote it by D. For any
state v of C, there exists a state of D prefixed with v:

Js€ X" [ ds(u) =v and ds(ur) = Vi, ) (7) -

Furthermore, if uy is a state of D, for some state y € A different from =,
then dg(ux) and ds(uy) are two different states of D prefixed with v,
because of the reversibility of M"*!: the transition function Opu(s) IS a
permutation.

Hence D can be seen as consisting of several full copies of C and #C
divides #D. They have the same size if and only if, once fixed some
state u of C, for any different states z,y € A, ur and uy cannot both
belong to D.



If all of those connected components of M"™*! built from C have the same
size as C, we say that C splits up totally. If all the connected components
of an automaton split up totally, we say that the automaton splits up
totally.

3 A Maximal Family for Groups

Antonenko and Russyev both investigated a family of Mealy automata
such that the finiteness of the generated group (Russyev [17]) or semi-
group (Antonenko [2]) is inherent to the structure of the automaton,
regardless of its production functions. In fact, though they use different
definitions and names, they study the same family: automata where ev-
ery cycle is a sink component. Antonenko has proved that this family
is maximal in the non-invertible case: if an automaton admits a cycle
which is not a sink component, it can be enriched to generate an infinite
semigroup.

To prove his result, Antonenko analyzes different cases and, in each situa-
tion, exhibits an element of infinite order in the semigroup. In this section
we prove the maximality of the former family for groups, using completely
different techniques. We adopt and adapt Russyev’s nomenclature.

3.1 How to Exit from a Cycle?

Let A = (A,X,0) be an automaton. A cycle of length n € N in the
automaton A is a sequence of transitions of A

il in—l in
11—, iy Tp1—Tp, Tp—1
where z1,...,x, are pairwise different states in A and i1,...,1, are some

letters of X.

The label of this cycle from the state xy is the word ig - - - ipiy -+ - ip_1.
This cycle is with external exit if there exist k with 1 <k <nandi€ X
satisfying d;(zx) & {z1,...,x,}. It is with internal exit if there exist k
with 1 < k < n and i € X satisfying d;(xx) € {x1,...,2,} and &;(zy) #
di, (zr). We could say that a cycle is with exit without specifying the
nature of the exit. In all other cases, this cycle is without exit. Examples
are given in Fig. 3.

Note that the existence of a cycle with internal exit induces the existence
of a (possibly shorter) cycle with external exit. For example in Fig. 3, the

cycle 1 % 2% 3% 4% 1 has two internal exits: 4 b 4and3 > 1; the
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Fig.3. Thecycle 1 &2 % 3 25 1 is with external exit; thecycle 1 %2 %3 54 51
is with internal exit; and the cycle 6 = 6 is without exit.

first one leads to the cycle 4 5, 4 with external exit, while the second one

leads to the cycle 1 =2 % 3 5 1 with external exit.

Proposition 1 ([2,17]). Whenever an automaton A admits no cycle
with exit, whatever choice is maid for the production functions p, the
enriched automaton (A, p) generates a finite (semi)group.

3.2 A Pumping Lemma for the Reversible Two-State
Automata

It is proved in [12, Lemma 10] that in the case of a reversible Mealy
automaton M with exactly two states, if some power of M splits up
totally, then all the later powers of M split up totally. We can deduce the
following result which can be seen as a pumping lemma: if the generated
semigroup is infinite, sufficiently long paths can be considered in the dual
automaton to turn indefinitely in a cycle.

Lemma 2 (Pumping Lemma). Let M be a reversible Mealy automa-
ton with two states {x,y}. The automaton M generates an infinite semi-
group if and only if, for any integer N € N, there exists a word u € {x,y}*
of length at least N such that the states ux and uy belong to the same
connected component of MU+,

3.3 The Family of Automata with no Cycles with Exit is
Maximal for Groups

We prove here that any automaton which admits a cycle with exit can be
enriched in order to generate an infinite group. We analyze several simple
cases in Lemmas 3, 4, and 5 which contribute to prove the general case
of Theorem 6.



Lemma 3. Any automaton over a binary alphabet with a cycle with ex-
ternal exit can be enriched to generate an infinite group.

Proof. Let A be an automaton over a binary alphabet {0, 1} with a cycle C
with external exit as shown in Fig. 4.

o,

Fig. 4. The cycle C is with external exit: y = d;(z), y € C.

Take the following permutations on the alphabet : p, permutes the letters
of the alphabet and p, stabilizes the alphabet for any other state z (in
particular for any state of C).

Let s € {0,1}" be the label of C from z. For any n € N, the words s"i0
and s™i1 belong to a same connected component of (A, p)I5It2: p,.(s7i0) =
s™il. The Mealy automaton (A, p) is reversible and has two states,
so we can apply the Pumping Lemma and conclude on the infiniteness

of (A, p)) by (F2) and (F3). 0

Lemma 4 (River of no return Lemma). Let A be an automaton
and C a cycle of A. If C admits an external exit to some state and is not
reachable from this state, then A can be enriched to generate an infinite

group.

Proof. The idea of this proof is to mimic the adding machine (see Fig. 1).
Again, Fig. 4 illustrates the situation: C admits an external exit to the
state y, the additional hypothesis being that C is not reachable from y
(and the alphabet is not supposed binary any longer).

Denote the label of C from x by s = jt with j € X and t € X*. We choose
the following production functions on the alphabet: p, is the transposition
of i and j and p, is the identity for any other state z.

As for the adding machine, the orbit of (jt)" under the action of p,
has size 2". Therefore the element x is of infinite order and so is the

group ((A, p)). O

Lemma 5. Any reversible automaton with a cycle with exit can be en-
riched to gemerate an infinite group.



Proof. Let A = (A,X,0) be a reversible automaton with a cycle with
exit.

As A is reversible, it admits some states x,y,z with  # y such that
there exist a transition from z to z and a transition from y to z. We can
choose the permutations p, and p, such that these transitions have the
same output and take identity for all the other permutations.

The enriched automaton (A, p) is invertible and reversible but not bire-
versible. Hence it generates an infinite group by (F4). a

The next theorem is the main result of this paper.

Theorem 6. Any automaton with a cycle with exit can be enriched into
an invertible Mealy automaton generating an infinite group.

Proof. Let A= (A, X,J) be an automaton with a cycle with exit.

By (F1), we can suppose, without loss of generality, that A4 is pruned.
If there exists a transition not belonging to a cycle, as the starting state
of this transition is reachable from a cycle, Lemma 4 applies and we are
done.

We can assume now that any transition belongs to (at least) one cycle.
If A is reversible, it can be enriched to generate an infinite group by
Lemma 5.

Fig. 5. Path from z with all transitions labelled by 3.

We can suppose now that A is not reversible: there exist a state x and a
letter ¢ such that x has no incoming transition labelled by . Consider the
path starting at x with all transitions labelled by ¢ as shown in Fig. 5.
This path loops on some state y # x. Denote by C the resulting cycle. We
have y = d;ntr#c(x) for some minimal n > 0 and for all £ > 0. Now let 2’
denote the state d;n—1(z): we have 2’ & C.

The transition 2’ —y belongs to some cycle by hypothesis and this cycle

is not C by construction. Therefore C admits an external exit /'~y
(with j # 4). Hence 2’ is reachable from y and so from C, by hypoth-
esis, but does not belong to C, by construction. The automaton B =

(A, {i, 7}, (6i,8;)) contains the cycle C and the transition 3 ~+y”. So B



can be enriched to generate an infinite group by Lemma 3, say with p =

(pr : {4,7} — {4,7})2ea. This group is a quotient of any group obtained
by completing each p, from {i,;} into X', and we can conclude. ad
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