K. Strebel, . Vif, and . Vpu, HIV Accessory Genes Vif and Vpu, Adv Pharmacol, vol.55, pp.199-232, 2007.
DOI : 10.1016/S1054-3589(07)55006-4

L. Fan and K. Peden, Cell-free transmission of vif mutants of HIV-1, Virology, vol.190, issue.1, pp.19-29, 1992.
DOI : 10.1016/0042-6822(92)91188-Z

D. Gabuzda, K. Lawrence, and E. Langhoff, Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes, J Virol, vol.66, pp.6489-6495, 1992.

A. Borman, C. Quillent, P. Charneau, C. Dauguet, and F. Clavel, Human immunodeficiency virus type 1 Vif-mutant particles from restrictive cells: role of Vif in correct particle assembly and infectivity, J Virol, vol.69, pp.2058-2067, 1995.

M. Courcoul, C. Patience, and F. Rey, Peripheral blood mononuclear cells produce normal amounts of defective Vif-human immunodeficiency virus type 1 particles which are restricted for the preretrotranscription steps, J Virol, vol.69, pp.2068-2074, 1995.

P. Sova and D. Volsky, Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1, J Virol, vol.67, pp.6322-6326, 1993.

U. Von-schwedler, J. Song, C. Aiken, and D. Trono, Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells, J Virol, vol.67, pp.4945-4955, 1993.

A. Sheehy, N. Gaddis, J. Choi, and M. Malim, Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein, Nature, vol.71, issue.6898, pp.646-650, 2002.
DOI : 10.1093/emboj/16.15.4531

M. Marin, K. Rose, S. Kozak, and D. Kabat, HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation, Nature Medicine, vol.9, issue.11, pp.1398-1403, 2003.
DOI : 10.1038/nm946

R. Holmes, M. Malim, and K. Bishop, APOBEC-mediated viral restriction: not simply editing?, Trends in Biochemical Sciences, vol.32, issue.3, pp.118-128, 2007.
DOI : 10.1016/j.tibs.2007.01.004

M. Khan, S. Kao, and E. Miyagi, Viral RNA Is Required for the Association of APOBEC3G with Human Immunodeficiency Virus Type 1 Nucleoprotein Complexes, Journal of Virology, vol.79, issue.9, pp.5870-5874, 2005.
DOI : 10.1128/JVI.79.9.5870-5874.2005

V. Soros, W. Yonemoto, and W. Greene, Newly Synthesized APOBEC3G Is Incorporated into HIV Virions, Inhibited by HIV RNA, and Subsequently Activated by RNase H, PLoS Pathogens, vol.75, issue.2, p.15, 2007.
DOI : 10.1371/journal.ppat.0030015.sg004

Y. Yu, Z. Xiao, E. Ehrlich, X. Yu, and X. Yu, Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines, Genes & Development, vol.18, issue.23, pp.2867-2872, 2004.
DOI : 10.1101/gad.1250204

S. Kao, M. Khan, and E. Miyagi, The Human Immunodeficiency Virus Type 1 Vif Protein Reduces Intracellular Expression and Inhibits Packaging of APOBEC3G (CEM15), a Cellular Inhibitor of Virus Infectivity, Journal of Virology, vol.77, issue.21, pp.11398-11407, 2003.
DOI : 10.1128/JVI.77.21.11398-11407.2003

R. Mariani, D. Chen, and B. Schrofelbauer, Species-Specific Exclusion of APOBEC3G from HIV-1 Virions by Vif, Cell, vol.114, issue.1, pp.21-31, 2003.
DOI : 10.1016/S0092-8674(03)00515-4

K. Stopak, C. De-noronha, W. Yonemoto, and W. Greene, HIV-1 Vif Blocks the Antiviral Activity of APOBEC3G by Impairing Both Its Translation and Intracellular Stability, Molecular Cell, vol.12, issue.3, pp.591-601, 2003.
DOI : 10.1016/S1097-2765(03)00353-8

E. Newman, R. Holmes, and H. Craig, Antiviral Function of APOBEC3G Can Be Dissociated from Cytidine Deaminase Activity, Current Biology, vol.15, issue.2, pp.166-170, 2005.
DOI : 10.1016/j.cub.2004.12.068

R. Holmes, F. Koning, K. Bishop, and M. Malim, APOBEC3F Can Inhibit the Accumulation of HIV-1 Reverse Transcription Products in the Absence of Hypermutation: COMPARISONS WITH APOBEC3G, Journal of Biological Chemistry, vol.282, issue.4, pp.2587-2595, 2007.
DOI : 10.1074/jbc.M607298200

T. Kawakami, L. Sherman, and J. Dahlberg, Nucleotide sequence analysis of equine infectious anemia virus proviral DNA, Virology, vol.158, issue.2, pp.300-312, 1987.
DOI : 10.1016/0042-6822(87)90202-9

M. Oberste and M. Gonda, Conservation of amino-acid sequence motifs in lentivirus Vif proteins, Virus Genes, vol.4, issue.1, pp.95-102, 1992.
DOI : 10.1007/BF01703760

C. Tian, X. Yu, and W. Zhang, Differential Requirement for Conserved Tryptophans in Human Immunodeficiency Virus Type 1 Vif for the Selective Suppression of APOBEC3G and APOBEC3F, Journal of Virology, vol.80, issue.6, pp.3112-3115, 2006.
DOI : 10.1128/JVI.80.6.3112-3115.2006

M. Fujita, H. Akari, and A. Sakurai, Expression of HIV-1 accessory protein Vif is controlled uniquely to be low and optimal by proteasome degradation, Microbes and Infection, vol.6, issue.9, pp.791-798, 2004.
DOI : 10.1016/j.micinf.2004.04.011

Z. Xiao, E. Ehrlich, and Y. Yu, Assembly of HIV-1 Vif-Cul5 E3 ubiquitin ligase through a novel zinc-binding domain-stabilized hydrophobic interface in Vif, Virology, vol.349, issue.2, pp.290-299, 2006.
DOI : 10.1016/j.virol.2006.02.002

A. Mehle, E. Thomas, K. Rajendran, and D. Gabuzda, A Zinc-binding Region in Vif Binds Cul5 and Determines Cullin Selection, Journal of Biological Chemistry, vol.281, issue.25, pp.17259-17265, 2006.
DOI : 10.1074/jbc.M602413200

M. Dettenhofer, S. Cen, B. Carlson, L. Kleiman, and X. Yu, Association of Human Immunodeficiency Virus Type 1 Vif with RNA and Its Role in Reverse Transcription, Journal of Virology, vol.74, issue.19, pp.8938-8945, 2000.
DOI : 10.1128/JVI.74.19.8938-8945.2000

H. Zhang, R. Pomerantz, G. Dornadula, and Y. Sun, Human Immunodeficiency Virus Type 1 Vif Protein Is an Integral Component of an mRNP Complex of Viral RNA and Could Be Involved in the Viral RNA Folding and Packaging Process, Journal of Virology, vol.74, issue.18, pp.8252-8261, 2000.
DOI : 10.1128/JVI.74.18.8252-8261.2000

M. Khan, C. Aberham, and S. Kao, Human Immunodeficiency Virus Type 1 Vif Protein Is Packaged into the Nucleoprotein Complex through an Interaction with Viral Genomic RNA, Journal of Virology, vol.75, issue.16, pp.7252-7265, 2001.
DOI : 10.1128/JVI.75.16.7252-7265.2001

S. Henriet, D. Richer, and S. Bernacchi, Cooperative and Specific Binding of Vif to the 5??? Region of HIV-1 Genomic RNA, Journal of Molecular Biology, vol.354, issue.1, pp.55-72, 2005.
DOI : 10.1016/j.jmb.2005.09.025

M. Khan, H. Akari, and S. Kao, Intravirion Processing of the Human Immunodeficiency Virus Type 1 Vif Protein by the Viral Protease May Be Correlated with Vif Function, Journal of Virology, vol.76, issue.18, pp.9112-9123, 2002.
DOI : 10.1128/JVI.76.18.9112-9123.2002

M. Hutoran, E. Britan, and L. Baraz, Abrogation of Vif function by peptide derived from the N-terminal region of the human immunodeficiency virus type 1 (HIV-1) protease, Virology, vol.330, issue.1, pp.261-270, 2004.
DOI : 10.1016/j.virol.2004.09.029

X. Yang, J. Goncalves, and D. Gabuzda, Phosphorylation of Vif and its role in HIV-1 replication, J Biol Chem, vol.271, pp.10121-10129, 1996.

X. Yang and D. Gabuzda, Mitogen-activated Protein Kinase Phosphorylates and Regulates the HIV-1 Vif Protein, Journal of Biological Chemistry, vol.273, issue.45, pp.29879-29887, 1998.
DOI : 10.1074/jbc.273.45.29879

S. Yang, Y. Sun, and H. Zhang, The Multimerization of Human Immunodeficiency Virus Type I Vif Protein: A REQUIREMENT FOR Vif FUNCTION IN THE VIRAL LIFE CYCLE, Journal of Biological Chemistry, vol.276, issue.7, pp.4889-4893, 2001.
DOI : 10.1074/jbc.M004895200

J. Auclair, K. Green, and S. Shandilya, Mass spectrometry analysis of HIV-1 Vif reveals an increase in ordered structure upon oligomerization in regions necessary for viral infectivity, Proteins: Structure, Function, and Bioinformatics, vol.73, issue.2, pp.270-284, 2007.
DOI : 10.1002/prot.21471

B. Yang, L. Gao, and L. Li, Potent Suppression of Viral Infectivity by the Peptides That Inhibit Multimerization of Human Immunodeficiency Virus Type 1 (HIV-1) Vif Proteins, Journal of Biological Chemistry, vol.278, issue.8, pp.6596-6602, 2003.
DOI : 10.1074/jbc.M210164200

J. Miller, V. Presnyak, and H. Smith, The dimerization domain of HIV-1 viral infectivity factor Vif is required to block virion incorporation of APOBEC3G, Retrovirology, vol.4, issue.1, p.81, 2007.
DOI : 10.1186/1742-4690-4-81

S. Balaji, R. Kalpana, and P. Shapshak, Paradigm development: Comparative and predictive 3D modeling of HIV-1 Virion Infectivity Factor (vif), Bioinformation, vol.1, issue.8, pp.290-309, 2006.
DOI : 10.6026/97320630001290

W. Lv, Z. Liu, and H. Jin, Three-dimensional structure of HIV-1 VIF constructed by comparative modeling and the function characterization analyzed by molecular dynamics simulation, Organic & Biomolecular Chemistry, vol.278, issue.4, pp.617-626, 2007.
DOI : 10.1039/b612050d

B. Liu, X. Yu, K. Luo, Y. Yu, and X. Yu, Influence of Primate Lentiviral Vif and Proteasome Inhibitors on Human Immunodeficiency Virus Type 1 Virion Packaging of APOBEC3G, Journal of Virology, vol.78, issue.4, pp.2072-2081, 2004.
DOI : 10.1128/JVI.78.4.2072-2081.2004

X. Yu, Y. Yu, and B. Liu, Induction of APOBEC3G Ubiquitination and Degradation by an HIV-1 Vif-Cul5-SCF Complex, Science, vol.302, issue.5647, pp.1056-1060, 2003.
DOI : 10.1126/science.1089591

A. Mehle, B. Strack, and P. Ancuta, Vif Overcomes the Innate Antiviral Activity of APOBEC3G by Promoting Its Degradation in the Ubiquitin-Proteasome Pathway, Journal of Biological Chemistry, vol.279, issue.9, pp.7792-7798, 2004.
DOI : 10.1074/jbc.M313093200

S. Conticello, R. Harris, and M. Neuberger, The Vif Protein of HIV Triggers Degradation of the Human Antiretroviral DNA Deaminase APOBEC3G, Current Biology, vol.13, issue.22, pp.2009-2013, 2003.
DOI : 10.1016/j.cub.2003.10.034

H. Bogerd, B. Doehle, H. Wiegand, and B. Cullen, From The Cover: A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor, Proceedings of the National Academy of Sciences, vol.101, issue.11, pp.3770-3774, 2004.
DOI : 10.1073/pnas.0307713101

B. Mangeat, P. Turelli, S. Liao, and D. Trono, A Single Amino Acid Determinant Governs the Species-specific Sensitivity of APOBEC3G to Vif Action, Journal of Biological Chemistry, vol.279, issue.15, pp.14481-14483, 2004.
DOI : 10.1074/jbc.C400060200

B. Schrofelbauer, D. Chen, and N. Landau, From The Cover: A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif), Proceedings of the National Academy of Sciences, vol.101, issue.11, pp.3927-3932, 2004.
DOI : 10.1073/pnas.0307132101

H. Xu, E. Svarovskaia, and R. Barr, A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion, Proceedings of the National Academy of Sciences, vol.101, issue.15, pp.5652-5657, 2004.
DOI : 10.1073/pnas.0400830101

H. Huthoff and M. Malim, Identification of Amino Acid Residues in APOBEC3G Required for Regulation by Human Immunodeficiency Virus Type 1 Vif and Virion Encapsidation, Journal of Virology, vol.81, issue.8, pp.3807-3815, 2007.
DOI : 10.1128/JVI.02795-06

J. Li, M. Potash, and D. Volsky, Functional domains of APOBEC3G required for antiviral activity, Journal of Cellular Biochemistry, vol.424, issue.3, pp.560-572, 2004.
DOI : 10.1002/jcb.20082

B. Liu, P. Sarkis, K. Luo, Y. Yu, and X. Yu, Regulation of Apobec3F and Human Immunodeficiency Virus Type 1 Vif by Vif-Cul5-ElonB/C E3 Ubiquitin Ligase, Journal of Virology, vol.79, issue.15, pp.9579-9587, 2005.
DOI : 10.1128/JVI.79.15.9579-9587.2005

Y. Iwatani, H. Takeuchi, K. Strebel, and J. Levin, Biochemical Activities of Highly Purified, Catalytically Active Human APOBEC3G: Correlation with Antiviral Effect, Journal of Virology, vol.80, issue.12, pp.5992-6002, 2006.
DOI : 10.1128/JVI.02680-05

S. Gallois-montbrun, B. Kramer, and C. Swanson, Antiviral Protein APOBEC3G Localizes to Ribonucleoprotein Complexes Found in P Bodies and Stress Granules, Journal of Virology, vol.81, issue.5, pp.2165-2178, 2007.
DOI : 10.1128/JVI.02287-06

V. Simon, V. Zennou, and D. Murray, Natural Variation in Vif: Differential Impact on APOBEC3G/3F and a Potential Role in HIV-1 Diversification, PLoS Pathogens, vol.7, issue.1, p.6, 2005.
DOI : 10.1371/journal.ppat.0010006.st001

M. Santa-marta, A. Da-silva, F. Fonseca, A. Goncalves, and J. , HIV-1 Vif Can Directly Inhibit Apolipoprotein B mRNA-editing Enzyme Catalytic Polypeptide-like 3G-mediated Cytidine Deamination by Using a Single Amino Acid Interaction and Without Protein Degradation, Journal of Biological Chemistry, vol.280, issue.10, pp.8765-8775, 2005.
DOI : 10.1074/jbc.M409309200

M. Wichroski, K. Ichiyama, and T. Rana, Analysis of HIV-1 Viral Infectivity Factor-mediated Proteasome-dependent Depletion of APOBEC3G: CORRELATING FUNCTION AND SUBCELLULAR LOCALIZATION, Journal of Biological Chemistry, vol.280, issue.9, pp.8387-8396, 2005.
DOI : 10.1074/jbc.M408048200

B. Schrofelbauer, T. Senger, G. Manning, and N. Landau, Mutational Alteration of Human Immunodeficiency Virus Type 1 Vif Allows for Functional Interaction with Nonhuman Primate APOBEC3G, Journal of Virology, vol.80, issue.12, pp.5984-5991, 2006.
DOI : 10.1128/JVI.00388-06

A. Mehle, H. Wilson, and C. Zhang, Identification of an APOBEC3G Binding Site in Human Immunodeficiency Virus Type 1 Vif and Inhibitors of Vif-APOBEC3G Binding, Journal of Virology, vol.81, issue.23, pp.13235-13241, 2007.
DOI : 10.1128/JVI.00204-07

R. Russell and V. Pathak, Identification of Two Distinct Human Immunodeficiency Virus Type 1 Vif Determinants Critical for Interactions with Human APOBEC3G and APOBEC3F, Journal of Virology, vol.81, issue.15, pp.8201-8210, 2007.
DOI : 10.1128/JVI.00395-07

A. Mehle, J. Goncalves, M. Santa-marta, M. Mcpike, and D. Gabuzda, Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation, Genes & Development, vol.18, issue.23, pp.2861-2866, 2004.
DOI : 10.1101/gad.1249904

R. Deshaies and C. Scf, SCF and Cullin/RING H2-Based Ubiquitin Ligases, Annual Review of Cell and Developmental Biology, vol.15, issue.1, pp.435-467, 1999.
DOI : 10.1146/annurev.cellbio.15.1.435

L. Pintard, A. Willems, and M. Peter, Cullin-based ubiquitin ligases: Cul3???BTB complexes join the family, The EMBO Journal, vol.91, issue.8, pp.1681-1687, 2004.
DOI : 10.1038/sj.emboj.7600186

Z. Xiao, Y. Xiong, and W. Zhang, Characterization of a Novel Cullin5 Binding Domain in HIV-1 Vif, Journal of Molecular Biology, vol.373, issue.3
DOI : 10.1016/j.jmb.2007.07.029

K. Luo, Z. Xiao, and E. Ehrlich, Primate lentiviral virion infectivity factors are substrate receptors that assemble with cullin 5-E3 ligase through a HCCH motif to suppress APOBEC3G, Proceedings of the National Academy of Sciences, vol.102, issue.32, pp.11444-11449, 2005.
DOI : 10.1073/pnas.0502440102

S. Krishna, I. Majumdar, and N. Grishin, Structural classification of zinc fingers: SURVEY AND SUMMARY, Nucleic Acids Research, vol.31, issue.2, pp.532-550, 2003.
DOI : 10.1093/nar/gkg161

I. Paul, J. Cui, and E. Maynard, Zinc binding to the HCCH motif of HIV-1 virion infectivity factor induces a conformational change that mediates protein-protein interactions, Proceedings of the National Academy of Sciences, vol.103, issue.49, pp.18475-18480, 2006.
DOI : 10.1073/pnas.0604150103

Z. Xiao, E. Ehrlich, K. Luo, Y. Xiong, and X. Yu, Zinc chelation inhibits HIV Vif activity and liberates antiviral function of the cytidine deaminase APOBEC3G, The FASEB Journal, vol.21, issue.1, pp.217-222, 2007.
DOI : 10.1096/fj.06-6773com

J. Simon, A. Sheehy, E. Carpenter, R. Fouchier, and M. Malim, Mutational analysis of the human immunodeficiency virus type 1 Vif protein, J Virol, vol.73, pp.2675-2681, 1999.

T. Kamura, S. Sato, and D. Haque, The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families, Genes & Development, vol.12, issue.24, pp.3872-3881, 1998.
DOI : 10.1101/gad.12.24.3872

J. Zhang, A. Farley, and S. Nicholson, The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation, Proceedings of the National Academy of Sciences, vol.96, issue.5, pp.2071-2076, 1999.
DOI : 10.1073/pnas.96.5.2071

B. Kile, B. Schulman, and W. Alexander, The SOCS box: a tale of destruction and degradation, Trends in Biochemical Sciences, vol.27, issue.5, pp.235-241, 2002.
DOI : 10.1016/S0968-0004(02)02085-6

C. Stebbins, W. Kaelin, J. Pavletich, and N. , Structure of the VHL-ElonginC-ElonginB Complex: Implications for VHL Tumor Suppressor Function, Science, vol.284, issue.5413, pp.455-461, 1999.
DOI : 10.1126/science.284.5413.455

M. Kobayashi, A. Takaori-kondo, Y. Miyauchi, K. Iwai, and T. Uchiyama, Ubiquitination of APOBEC3G by an HIV-1 Vif-Cullin5-Elongin B-Elongin C Complex Is Essential for Vif Function, Journal of Biological Chemistry, vol.280, issue.19, pp.18573-18578, 2005.
DOI : 10.1074/jbc.C500082200

J. Simon, E. Carpenter, R. Fouchier, and M. Malim, Vif and the p55(Gag) polyprotein of human immunodeficiency virus type 1 are present in colocalizing membrane-free cytoplasmic complexes, J Virol, vol.73, pp.2667-2674, 1999.

E. Poole, P. Strappe, H. Mok, R. Hicks, and A. Lever, HIV-1 Gag-RNA Interaction Occurs at a Perinuclear/Centrosomal Site; Analysis by Confocal Microscopy and FRET, Traffic, vol.249, issue.9, pp.741-755, 2005.
DOI : 10.1111/j.1600-0854.2005.00312.x

S. Bernacchi, S. Henriet, P. Dumas, J. Paillart, and R. Marquet, RNA and DNA Binding Properties of HIV-1 Vif Protein: A FLUORESCENCE STUDY, Journal of Biological Chemistry, vol.282, issue.36, pp.26361-26368, 2007.
DOI : 10.1074/jbc.M703122200

C. Zimmerman, K. Klein, and P. Kiser, Identification of a host protein essential for assembly of immature HIV-1 capsids, Nature, vol.415, issue.6867, pp.88-92, 2002.
DOI : 10.1038/415088a

J. Levin, J. Guo, I. Rouzina, and K. Musier-forsyth, Nucleic Acid Chaperone Activity of HIV???1 Nucleocapsid Protein: Critical Role in Reverse Transcription and Molecular Mechanism, Prog Nucleic Acid Res Mol Biol, vol.80, pp.217-286, 2005.
DOI : 10.1016/S0079-6603(05)80006-6

C. Tisne, Structural Bases of the Annealing of Primer Lys tRNA to the HIV-1 Viral RNA, Current HIV Research, vol.3, issue.2, pp.147-156, 2005.
DOI : 10.2174/1570162053506919

P. Barraud, C. Gaudin, F. Dardel, and C. Tisne, New insights into the formation of HIV-1 reverse transcription initiation complex, Biochimie, vol.89, issue.10, pp.1204-1210, 2007.
DOI : 10.1016/j.biochi.2007.01.016

URL : https://hal.archives-ouvertes.fr/hal-00218345

S. Henriet, L. Sinck, and G. Bec, Vif is a RNA chaperone that could temporally regulate RNA dimerization and the early steps of HIV-1 reverse transcription, Nucleic Acids Research, vol.35, issue.15, pp.5141-5153, 2007.
DOI : 10.1093/nar/gkm542

URL : https://hal.archives-ouvertes.fr/hal-00167555

H. Liu, X. Wu, and M. Newman, The Vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures, J Virol, vol.69, pp.7630-7638, 1995.

D. Camaur and D. Trono, Characterization of human immunodeficiency virus type 1 Vif particle incorporation, J Virol, vol.70, pp.6106-6111, 1996.

M. Dettenhofer and X. Yu, Highly purified human immunodeficiency virus type 1 reveals a virtual absence of Vif in virions, J Virol, vol.73, pp.1460-1467, 1999.

S. Kao, H. Akari, and M. Khan, Human Immunodeficiency Virus Type 1 Vif Is Efficiently Packaged into Virions during Productive but Not Chronic Infection, Journal of Virology, vol.77, issue.2, pp.1131-1140, 2003.
DOI : 10.1128/JVI.77.2.1131-1140.2003

F. Guo, S. Cen, and M. Niu, The Interaction of APOBEC3G with Human Immunodeficiency Virus Type 1 Nucleocapsid Inhibits tRNA3Lys Annealing to Viral RNA, Journal of Virology, vol.81, issue.20, pp.11322-11331, 2007.
DOI : 10.1128/JVI.00162-07

X. Li, F. Guo, L. Zhang, L. Kleiman, and S. Cen, APOBEC3G Inhibits DNA Strand Transfer during HIV-1 Reverse Transcription, Journal of Biological Chemistry, vol.282, issue.44, pp.32065-32074, 2007.
DOI : 10.1074/jbc.M703423200

Y. Iwatani, D. Chan, and F. Wang, Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G, Nucleic Acids Research, vol.35, issue.21, 2007.
DOI : 10.1093/nar/gkm750

D. Jones, Protein secondary structure prediction based on position-specific scoring matrices, Journal of Molecular Biology, vol.292, issue.2, pp.195-202, 1999.
DOI : 10.1006/jmbi.1999.3091