Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

BrainPredict: a Tool for Predicting and Visualising Local Brain Activity

Abstract : In this paper, we present a tool allowing dynamic prediction and visualization of an individual's local brain activity during a conversation. The prediction module of this tool is based on classifiers trained using a corpus of human-human and human-robot conversations including fMRI recordings. More precisely, the module takes as input behavioral features computed from raw data, mainly the participant and the interlocutor speech but also the participant's visual input and eye movements. The visualisation module shows in real-time the dynamics of brain active areas synchronised with the behavioral raw data. In addition, it shows which integrated behavioral features are used to predict the activity in individual brain areas.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-02612819
Contributeur : Thierry Chaminade <>
Soumis le : mardi 19 mai 2020 - 16:02:37
Dernière modification le : lundi 21 décembre 2020 - 15:34:09

Fichier

2020.lrec-1.88.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-02612819, version 1

Collections

Citation

Youssef Hmamouche, Laurent Prevot, Magalie Ochs, Chaminade Thierry. BrainPredict: a Tool for Predicting and Visualising Local Brain Activity. Proceedings of The 12th Language Resources and Evaluation Conference, Nov 2020, Marseille, France. pp.703-709. ⟨hal-02612819⟩

Partager

Métriques

Consultations de la notice

242

Téléchargements de fichiers

180